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The statistical properties of off-lattice diffusion-limited aggregates~DLA ! grown in a strip between two
reflecting walls are investigated. A large number of independent runs are performed and the cell occupancy
distribution is measured and compared with the predictions of a recently proposed mean-field theory~MFT!. It
is shown that the mean occupancy profile moves at constant speed and has a shape and a selection mechanism
similar to that of stable Saffman-Taylor fingers. In particular, there exists a specific contour line of the mean
occupancy distribution~r50.6rmax! that has the width and the shape of the Saffman-Taylor fingerl50.5.
Motivated by the connection to the Saffman-Taylor problem, we extend our study to DLA growth in sector-
shaped cells. Again a remarkable agreement is found between the mean occupancy profile and the shape of the
selected stable finger in the small surface tension limit. Moreover, whenever the smooth finger is theoretically
expected to undergo a tip-splitting instability, one observes, as predicted by the MFT, a qualitative change in
the cell occupancy distribution that exhibits ‘‘profile crossing’’ together with a pronounced flattening of the tip
region. We comment on this phenomenon, which was not observed in a previous similar statistical analysis of
on-lattice DLA clusters due to the stabilizing effect of lattice anisotropy. The implications of our numerical
results to the relevance of the DLA mean-field theory are discussed.@S1063-651X~96!06905-8#

PACS number~s!: 68.70.1w, 61.43.Hx, 47.15.Hg, 47.20.Hw

I. INTRODUCTION

In recent years, diffusion-controlled growth phenomena
have attracted a lot of interest@1–15#. Notable examples
@16–18# of interfacial pattern formation in diffusive systems
range from viscous fingering to electrochemical deposition
and to the growth of bacteria colonies. Among this wide
variety of systems, the Saffman-Taylor~ST! fingering@19# in
two-dimensional Hele-Shaw cells is without any doubt the
one that has received the most attention@3–6,20#. Experi-
mental and theoretical efforts have been mainly focused in
two directions. On the one hand, the shape and selection
mechanisms of nonlinear stable smooth curved fronts were
investigated and analytical solutions were found in various
geometries@3–6,19–21#. On the other hand, the very un-
stable branched patterns observed when either decreasing
surface tension or increasing the width of the cell have been
mainly considered from the point of view of their fractal
structure@21–29#.

The instability giving rise to ST viscous fingering@19,30#
occurs at the interface between two fluids moving between
narrowly spaced solid plates. The interface is unstable when
the less viscous fluid forces the most viscous fluid to recede.
The flow of the fluid is dominated by the viscous dissipation
on the plates and the mean velocity in the cell plane is pro-

portional to the pressure gradientVW 52(b2/12m)¹W p, where
b is the cell thickness andm the viscosity of the most viscous
fluid. Because of the incompressibility of the fluids, the pres-
sure field obeys a Laplace lawDp50. Surface tension has a
stabilizing influence@3#; this is taken into account by adding
a boundary condition for the pressure jump at the interface:
[p]5Tk, whereT is the surface tension andk the local
curvature of the meniscus in the plane of the cell. The linear
stability analysis@30# of a plane interface moving at constant

velocity VW gives the wavelength of maximum instability:

l c5pb(T/mV)1/2. The capillary lengthl c can be seen as the
characteristic small length scale of viscous fingering.

In the configuration originally chosen by Saffman and
Taylor @19#, the fluids move in a very long linear channel of
width W. In this geometry, the boundaries somewhat sim-
plify the problem by imposing translational invariance. The
control parameter is usually defined as the following dimen-
sionless number@3,21#: B5(1/12p2)( l c/W)2, which is pro-
portional to the square of the ratio of the smallest (l c) to the
largest (W) characteristic length scales of the system. When-
ever these two length scales are close to each other
~l c/W.1/8, B.1/768p2!, the injected less viscous fluid
takes the shape of a single finger that moves through the cell
at constant velocity@21#. In their pioneering work, Saffman
and Taylor@19# showed that the shape of the finger can be
obtained from effective two-dimensional~2D! equations
when the surface tension between the two fluids is neglected
(T50). In this approximation, the shape is not entirely de-
termined but rather a one-parameter family of shapes exists,
the free parameter being the ratiol ~0<l<1! of the width of
the finger to the width of the channel:

x~y!5
W~12l!

2p
lnF12 S 11cos

2py

lW D G ~1!

~0x corresponds to the direction of propagation of the fin-
ger!. The experiments@21,31# show, however, that the finger
tends to occupy half of the channel at small values of the
parameterB ~e.g., at large velocities!. The selection of the
observed asymptotic finger widthl50.5 was understood
rather recently after numerical investigations@32,33# and
analytical works@34–36#. Acting as a singular perturbation,
surface tension selects, out of the continuum Saffman-Taylor
family @Eq. ~1!#, a discrete family of finger shapes [ln(B)]
that all merge whenT ~i.e., B! tends to zero. Among this
family, only the branch defined by the narrowest of these
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shapes (ln50) corresponds to linearly stable fingers. Actu-
ally, when the parameterB becomes too small, the two char-
acteristic length scaleslmin5l c and lmax5W depart signifi-
cantly from each other and one observes experimentally the
destabilization of the smooth finger into an arborescent struc-
ture with a fractal-like appearance@21,27,29#. As pointed out
in Refs. @5,6,19#, this phenomenon can be understood as a
noise-induced jump from the stable to the unstable branches
of finger shapes that is possible only for small values ofB,
when different branches are getting very close to each other.

Since in Laplacian pattern forming systems, the motion of
the interface depends upon the boundary conditions fixed by
the cell shape, the choice of the geometry is crucial@21#. As
a very clever generalization of the Hele-Shaw geometry@41#,
Thoméet al. @42# have proposed to study viscous fingering
in a wedge of arbitrary angleu0; this sector geometry pro-
vides a natural bridge between the linear@19,41# and the
open circular@43,44# geometries. It was observed that, as in
Hele-Shaw cells, for large enough velocity, a unique finger
tends to occupy a well-defined angle fraction of the sector
cell. The difficulty of experiments in a wedge comes from
the unsteadiness of the growth@42#. If the front velocity is
kept constant, thereby fixing the capillary lengthl c , then the
dimensionless parameterB varies during the growth since
the local widthW(r )5ru0 of the cell is a function of the
distancer of the front to the apex (B;1/r 2). B increases in
convergent cells~u0,0! and decreases in divergent ones
~u0.0!. Only if B is maintained artificially constant by ad-
justing the velocity so that it varies asV;1/r 2 will the finger
have a self-similar growing shape. For a given value ofB, its
angular width scales on the cell angleu0. For all convergent
cells, the relative angular finger widthl(u0 ,B) is observed
to converge towards an asymptotic valuel~u0!,

1
2 in the limit

B tends to zero. Moreover, this fractionl~u0! is an increasing
function that approaches12 as u0 approachesu050, i.e., the
value corresponding to linear cells. For divergent cells, simi-
lar single smooth fingers of relative widthl~u0!.

1
2 are

formed wheneverB takes on values above some critical
thresholdBc(u0) that turns out to be an increasing function
of u0 @42#. Whatever the valueu0 of the cell angle, below this
critical parameter valueB,Bc(u0), smooth self-similar fin-
gers are unstable. Very much like what has been observed in
linear cells, when the ratioW/ l c is large, the range of scales
available to fractal branching is large enough for treelike
structures to develop@21,42#.

From a theoretical point of view, a lot of effort has been
devoted recently to generalizing the shape, selection, and
stability analysis of steady-state fingers in linear cells to
smooth fingers growing in sector-shaped cells@20,45–49#.
This amounts to a switch from a growth problem in a geom-
etry that is translational invariant to a geometry that is in-
variant under rescaling. In the limit of zero surface tension,
for each value of the sector angleu0, a one-parameter family
of self-similar finger solutions parametrized by their relative
angular widthl~u0! was analytically found@46# as the coun-
terpart of the Saffman-Taylor solution family in a linear
channel. The role of surface tension in finger selection has
been investigated numerically and analytically with very in-
teresting results@46–49#. For convergent sectors of arbitrary
angle u0,0, a discrete family of solution branches
[ln(u0 ,B)] is selected; they all converge to a self-similar

finger profile of finite angular widthl~u0! in the limit B goes
to 0. As in linear geometry, the branch defined by the nar-
rowest fingers corresponds to the observed stable solutions.
A surprising result was, however, obtained for divergent sec-
tors. A discrete family of branch solutions always exists for
any sector angleu0 at rather largeB values. But these
branches [ln(u0 ,B)] no longer approach a unique limiting
shape asB tends to zero since different branches merge by
pairs and successively disappear before the limit of zero sur-
face tension is reached. As emphasized in Ref.@46#, the
merging of the first two lower branches@the lowest one
ln50(u0 ,B) corresponding to the stable fingers# is likely to
correspond to a tip-splitting instability for the smooth finger
@20,21#. Therefore, on the contrary to the situation encoun-
tered in linear or convergent sector-shaped cells, the destabi-
lization of the finger into an arborescent fractal structure in
divergent cells turns out to be intrinsic and noise indepen-
dent. Moreover, since most of the experiments are performed
at constant applied pressure@42#, there is no way to escape
from this instability; actually the finger velocity slows down
like 1/r , which implies thatB(;1/r ) decreases irreversibly
during the growth process. Thus, in these experiments, one
follows dynamically the branch of stable solutions, ulti-
mately reaching the critical point [Bc(u0)] where this branch
disappears. The theoretical band-merging scenario@46–49#
therefore provides a comprehensive understanding of the ex-
perimental observation that in a divergent sector, whatever
the angleu0, a single smooth finger is always observed as a
transient towards a more complicated morphological evolu-
tion. As the result of a competition between tip-splitting in-
stabilities and screening effects, the system evolves asymp-
totically towards some apparently disordered arborescent
pattern that is likely to display scale-invariance properties
@21,42#.

Among the various models of stochastic growth proposed
for fractal aggregates@12#, the diffusion-limited aggregation
~DLA ! model introduced by Witten and Sander@50# is well
known to produce self-similar ramified patterns that strongly
resemble the unstable viscous finger morphologies observed
in the unsteady regime@21–29#. In this model, random walk-
ers are sent, one at a time, from far away and the structure
grows via irreversible sticking when the walker reaches a
neighboring site of the preexisting aggregate. As was first
noted by Paterson@22#, the equations of growth of DLA are
similar to those of ST fingering in the limit of zero surface
tension. In the numerical model of random walking particles,
the role of pressure is played by the probabilityP to visit of
a site;P similarly obeys a Laplace lawDP50 and the nor-
mal velocity of growth of a region of the interface isVn
}(¹W P)n . The difference between the two descriptions
comes, of course, from their deterministic or stochastic na-
ture but also from the existence of surface tension in viscous
fingering, which has no obvious counterpart in DLA. Let us
note, however, that the computation of DLA clustering is
usually performed on a lattice and that the lattice mesh size
l u introduces a smallest length scalelmin in the simulation
@21,29#. But that does not mean,a priori, that the probability
P satisfies the boundary condition [P]5Tk at the interface.

Several experiments and numerical simulations were de-
voted to the comparison of the fractal branched patterns ob-
tained in viscous fingering and DLA clusters@3,12,21–
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28,51–56#. More remarkable is the connection recently
found in Ref.@57#, between the ramified DLA structures and
the smooth stable viscous fingers. The computation of the
ensemble-averaged DLA pattern, which of course is a rather
smooth and orderly structure, has revealed a mean profile
that coincides with the~finger! shape of the smooth analyti-
cal solution. Furthermore, the selection of a particular finger
width, generally ascribed for stable fingers to the effect of
surface tension, apparently survives the instability and still
governs, at least in a statistical sense, the growth in the frac-
tal regime. For example, in a linear channel, the average
DLA structure defined by the points of the cell whose occu-
pancy probability is above average, is almost exactly thel5
1
2 Saffman-Taylor finger. This statistical analysis has been
extended to sector geometries@57#, to the case of anisotropic
growths@58,59#, and to the unstable side branchings of frac-
tal dendrites@58#. These studies all confirm the unexpected
feature that Laplacian growth processes seem to retain, in the
unstable fractal branching regime, some memory of the
shape and selection mechanism of the stable finger structure
@29#.

In order to explain the above correspondance, a mean-
field theory ~MFT! has been proposed recently for two-
dimensional DLA, both in linear@60# and sector@61# geom-
etries. This theoretical approach is directly inspired by the
mean-field equations established by Witten and Sander@50#
in their pioneering work that couple a walker field to an
aggregate field. The main modification is the introduction of
an additional parameter that is supposed to account for the
intrinsic discreteness of the sticking process in the DLA
model. The comparison between the MFT predictions and
the occupancy probability distributions computed in DLA
simulations yields satisfactory results as long as the en-
semble average is performed on small-size~or small-mass!
DLA clusters. This remarkable agreement provides some un-
derstanding of the relationship discovered experimentally be-
tween ramified DLA structures and smooth selected finger
patterns@57#. Some severe discrepancies seem nevertheless
to arise when one proceeds to large-mass DLA simulations,
e.g., in very wide linear cells or in divergent sector cells
when one does not stop the simulation early enough before
entering some crossover regime towards dendritic growth
@58,59#. Large-mass DLA clusters grown on a square lattice
are known to display preferential directions of growth@62–
71#. One can easily imagine that the anisotropy inherent to
on-lattice DLA simulations may completely alter its
ensemble-averaged behavior at macroscopic scale. In Ref.
@61#, Levine and Tu have demonstrated that adding phenom-
enologically anisotropy in the MFT modifies the overall
shape of the aggregate field in such a way that it correctly
describes the average DLA structures. Here, our aim is to
take the opposite task and to get rid of the underlying lattice
anisotropy by performing DLA simulations with an off-
lattice algorithm@72–75#. Then we will be in position to
proceed to a direct comparative test of the relevance of the
MFT, keeping in mind, as a reference shape, the correspond-
ing ST finger solution when it is stable.

The paper is organized as follows. Section II is devoted to
the comparison of averaged off-lattice DLA patterns and

MFT predictions in linear channels. This study is extended to
sector-shaped cells in Sec. III. Our conclusions are summa-
rized in Sec. IV.

II. LINEAR GEOMETRY

A. Off-lattice DLA simulations

To generate isotropic DLA clusters in a strip with reflect-
ing walls, we have adapted a very efficient off-lattice algo-
rithm originally designed by Tolman and Meakin@72#, and
previously used for simulating DLA growth in circular ge-
ometry @73–75#. This algorithm combines the simplicity of
the off-lattice algorithm proposed in Ref.@76# with the ra-
pidity of the on-lattice hierarchical algorithm@62# ~we use
the following conventions: we choose 0x along the cell axis
and 0y across the cell!. Initially, a circular particle of diam-
etera is launched at a random position on a line parallel to
the linear substrate and located at a distancexmax1l from it,
xmax being the abscissa of the particle of the cluster the fur-
thest from the basis andl is a few times the particle diameter
~practically l53a!. Then, at every step, the distancedmin of
the walking particle to the closest point of the cluster is de-
termined: if dmin,a, the diffusing particle stops and be-
comes part of the cluster by sticking to the closest cluster
particle previously determined. Otherwise it jumps to a ran-
dom position on a circle of radiusR5dmin2(12d)a, where
0<d<1 is an overlapping parameter. According to standard
practice, the diffusing particle is lost if its distance to the
linear substrate exceeds some critical valuexc54xmax. As
far as the efficiency of the algorithm is concerned, the calcu-
lation at each step of the distancedmin of the diffusive par-
ticle to the aggregate can be very time consuming. To make
practical the computation of large-mass DLA clusters, we
have followed the strategy advocated by Tolman and Meakin
@72# to improve and extend in higher dimensionalities previ-
ous off-lattice algorithms@77,78#. Directly inspired by the
hierarchical on-lattice algorithms developed by Ball and
Brady @62#, this approach consists in constructing a collec-
tion of coarse-grained versions of the cluster at different
scales. First, the cluster as seen at the coarsest scale is ex-
amined and if a jump on that scale can be taken by the
diffusing particle, the jump is executed. Otherwise, one
switches to the next lower scale version of the cluster in
order to get more accurate information about the location of
the cluster in the vicinity of the particle. This process of
consulting more and more resolved approximations of the
cluster continues until one reaches the lowest scale. At this
level, from the knowledge of the exact location of the cluster
particles, one knows whether the diffusing particle has al-
ready contacted the cluster or if it can be moved by a small
distance of the order of one particle radius. After a particle
has been added to the cluster, the collection of hierarchical
coarse-grained versions of the DLA cluster must be updated.

In order to generate DLA clusters of slightly overlapping
particles, we fix once for all the values of the overlapping
parameterd50.2. We refer the reader to Ref.@73#, where the
effect of this model parameter on the DLA morphological
characteristics has been investigated systematically. As in
our previous study of on-lattice DLA clusters in Ref.@57#,
we use a numerical trick to initiate the growth from the cell
axis: the very first random walking particles are likely to
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stick onto a needle centered on the cell axis and the length of
which is scaled on the width of the strip~practically
Ln55W/32!. This algorithmic artifice reduces considerably
the period of the selection regime@14,79–83# among DLA
trees grown from the linear substrate, which is out of the
scope of the present analysis. In Fig. 1~a! is shown a cluster
of massM52700, grown with our off-lattice algorithm in a
strip of widthW564a ~for the sake of simplicity we will set
a51 in the rest of this paper and we will expressW as well
as other length variables in particle size units!. The mass is
chosen large enough that the characteristic size of the aggre-
gate~along 0x! be much larger thanW for the steady fractal
growth regime to settle down. In practice, the criterion we
use is to adapt the massM to the value of the cell widthW
so that the average length of the aggregateXtip.3W; actu-
ally this provides us with an intermediate region of size
larger thanW where the steady fractal regime can be studied
statistically@57–59#.

Our statistical analysis of off-lattice DLA clusters consists
in measuring the mean occupancyr(x,y) of each site of the
strip @57#. In a given strip of widthW, we therefore growN
aggregates with the same total numberM of particles. For
each aggregate, we associate each of its particles to the site
of the grid closest to it. We then count for each point of the
grid how many times it has been occupied by a particle of an
aggregate. The mean occupancyr(x,y) is obtained by divid-
ing this number by the total numberN of realizations. When
averaging 255 DLA clusters of the type shown in Fig. 1~a!,
one gets the mean occupancy distribution represented under

various forms in Fig. 2. The three-dimensional representation
of r(x,y) in Fig. 2~a!, as well as the contour plots in Fig.
2~b! and the mean occupancyr(x,y50) along the axis of
the channel in Fig. 2~c! clearly show three distinct regimes.
First there is some initial transient regime (0,x,50) where
one progressively loses the influence of the initial conditions
~mainly the presence of the needle! to the benefit of the
growth, which settles in the center of the channel from the
beginning. Then, there is a region where the cell translational
invariance imposes itself on the occupancy profile (50,x
,225); in this region the screening between the branches no
longer operates and the growth has ceased. The falloff of the
mean occupancy at the front zone corresponds to the active
part of each pattern and to the dispersion of the tip position
(x.225). As seen in Fig. 2~b!, the overall contour plots have
a finger shape that strongly resembles the set of analytical
solutions@Eq. ~1!# derived by Saffman and Taylor@19#. Let
us note, however, that the global shape ofr(x,y) does not
match the occupancy distribution of a stable viscous finger.
This is obvious in Fig. 2~d! where some transverse section of
the mean occupancy is shown to deviate significantly from a
step profile@r51 at the center of the cell~air! andr50 on
the edge~oil!#. Indeed, the histogram presented in this figure
is an averaged transverse profile obtained by taking advan-
tage of the translational invariance and summing over our
statistical sample of 128 transverse sections in the asymp-
totic steady fractal regime@29,73#:

r̄ ~y!5 (
x580

208

r~x,y!/128.

FIG. 1. ~a! An off-lattice DLA cluster of mass
M52700 grown in a channel of widthW564.
~b! Region of the strip with mean occupancy
above the ‘‘mean’’ rater̄m50.142@Eq. ~5!#; 255
aggregates of the type shown in~a! were grown
to obtain this repartition. The continuous line is
the shape of the Saffman-Taylor analytical solu-
tion of width l50.60 @Eq. ~1!#.

FIG. 2. Statistical analysis of off-lattice DLA
clusters of massM52700 grown in a channel of
width W564. Our statistical sample involves
N5255 aggregates similar to the one shown in
Fig. 1~a!. ~a! Three-dimensional representation of
the mean occupancyr(x,y). ~b! Contour plots
for r: the levels are 0.05, 0.10, 0.15, 0.20, and
0.25 from outer to inner.~c! Histogram of the
mean occupancy along the axis of the strip:r(x,y
50). ~d! Histogram of the mean transverse occu-
pancy averaged over 128 sections across the
channel:r̄(y)5( x580

208 r(x,y)/128. The solid line
corresponds to the conjectured transverse profile
rT(y)5rmaxcos

2(py/W) @Eq. ~2!#.
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This transverse occupancy profile has a maximumr̄maxat the
center (y50) and decreases smoothly to zero at the walls
(y56W/2). It turns out also to be different from the asymp-
totic profile:

rT~y!5rmaxcos
2~py/W!, ~2!

conjectured by Arneodoet al. @57# in a similar statistical
study of on-lattice DLA clusters@see also Fig. 5~d!#. How-
ever, if according to the recipe proposed in Refs.@29, 58, and
59#, one estimates the ‘‘mean’’ width of the mean occupancy
by determining the points on each side of the cell axis that
satisfy

ym
65

1

r̄max
(
0

6W/2

r̄~y!, ~3!

one gets for the relative width

l5~ym
12ym

2!/W ~4!

a valuel50.6060.03, which is definitely larger than the
value 0.50 expected from the conjectured transverse profile
in Eq. ~2! ~the estimate of the error bar relies upon our sta-
tistical sample of 128 transverse occupancy histograms!. Let
us emphasize that this definition of the relative mean width
of the mean occupancy amounts to comparingr̄(y) to a step
profile of the same heightr̄max and the same integral. Now if
one selects only the points of the strip of mean occupancy
larger than the mean rate,

r̄m5 r̄~ym
6!, ~5!

namely,r>14.2% ~>rmax/2!, one defines a region of large
occupancy that is remarkably well fitted by the Saffman-
Taylor analytical solution of relative widthl50.60@Eq. ~1!#,
as shown in Fig. 1~b!. Thus, one recovers the same rather
striking result as originally discovered for on-lattice DLA
clusters in Ref.@57# @see also Fig. 5~b!#, except that the rela-

tive width l of this mean finger is significantly larger than
the valuel5 1

2 obtained for on-lattice DLA clusters in sur-
prising agreement with the relative width of the stable ST
finger selected by surface tension@32–40#. We will spend
the rest of this section discussing this apparent discrepancy.

We have repeated our statistical analysis of off-lattice
DLA clusters for channels of various widths ranging from
W516 to 256. As illustrated in Fig. 3 for the widest cell
(W5256), the main features observed in Figs. 1 and 2 with-
stand such a change in the cell size. In particular, the mean
ensemble-averaged DLA profile defined from Eqs.~3! and
~4! has again the shape of one member of the ST analytical
solution family@Eq. ~1!#; the solid line in Fig. 3~b! represents
the profile of the ST finger of relative widthl50.57. From
the computation of 512 histograms of mean transverse occu-
pancy corresponding to as many sections across the strip in
the steady fractal regime (250,x,850), one gets the aver-
age transverse histogram shown in Fig. 3~d!. Its width
l50.5760.02 is slightly smaller than the width of the aver-
age finger observed forW564 in Fig. 1~b!. The estimates of
l obtained for different values ofW are reported in Fig. 4, as
a function of 1/W. Despite some slow decrease ofl when
increasingW, it seems that for cells of widthW.100, one
does not observe any further quantitative change in the esti-
mate ofl. Actually, l is likely to converge towards an as-
ymptotic limit value l50.5760.02, which is significantly
~with respect to the statistical uncertainty! larger than the
asymptotic predictionl51

2 for the relative width of stable ST
fingers in the limitB→0.

In Fig. 4 are also reported the values of the relative width
l of the large occupancy region obtained for DLA clusters
generated using the on-lattice algorithm described in Ref.
@84#, the lattice being parallel to the cell axis. ForW ranging
from 16 to 256,l is found significantly smaller for on-lattice
than for off-lattice DLA clusters. Actually, as previously
pointed out by Arneodoet al. @57#, the on-lattice data fall
remarkably close to the asymptotic predictionl5 1

2 for the
selected ST finger in the limit of zero surface tension. In

FIG. 3. Statistical analysis ofN5255 off-
lattice DLA clusters of massM524 000 grown
in a strip of widthW5256. ~a! A realization of
the off-lattice DLA process.~b! The points of the
cell where the mean occupancy is above the
‘‘mean’’ rate r̄m50.095 are represented in grey.
The continuous line is the shape of the ST ana-
lytical solution of width l50.57 @Eq. ~1!#. ~c!
Histogram of mean longitudinal occupancyr(x,
y50). ~d! Averaged histogram of mean trans-
verse occupancy over 512 sections across the
strip in the steady fractal regime:r̄(y). The
conjectured transverse profile rT(y)
5rmaxcos

2(py/W) @Eq. ~2!# is shown in solid
line for comparison.
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order to carry out a detailed comparison between off-lattice
and on-lattice growths, we summarize in Fig. 5 the results of
a statistical analysis ofN51000 on-lattice DLA clusters of
massM52700, grown in a strip of widthW564 in similar
conditions as the off-lattice simulations shown in Figs. 1 and
2. As seen on the region of large occupancy in Fig. 5~b!, its
profile is still very well fitted by the shape of a ST finger, but
this finger is narrower,l50.5160.02, and therefore longer
~Xtip;360! than the off-lattice ST finger~Xtip;280! in Fig.
1~b!. This observation is a strong indication that the presence
of an underlying lattice favors the growth along the lattice
axis, which is parallel to the cell axis. The anisotropy in-
duced by the lattice at a microscopic level in the sticking rule
therefore imposes some preferential direction of growth at a
macroscopic level@62–71#. This phenomenon becomes more

and more pronounced when one considers wider and wider
strips. Individual realizations evolve progressively towards
dendritic fractal patterns while the region of mean occupancy
becomes narrower and narrower@58# as one can guess from
Fig. 4 where the relative width of the mean finger obtained
for W5512 (N550), l50.3760.06, is definitely smaller
than the asymptotic limitl51

2 for isotropic fingers. At this
point, we refer the reader to a previous study of anisotropic
Laplacian growths by Arneodoet al. @59#, where this
anisotropy-induced morphological transition from DLA to
dendritic patterns was quantitatively understood by analogy
with the anisotropy-induced crossover known for stable
smooth fingers from isotropic~l51

2! to needlelike~l50! ST
patterns@21,85–98#. As originally pointed out in Ref.@57#,
the histogram of mean transverse occupancy computed for
on-lattice DLA clusters@Fig. 5~d!# has a shape that is hardly
distinguishable fromrT(y)5rmaxcos

2(py/W) @Eq. ~2!#.
This might be pure coincidence. Let us note that this is no
longer the case in the crossover regime towards dendritic
growth as discussed in Ref.@59#.

What seems to happen for off-lattice simulations is there-
fore rather different from on-lattice simulations@99#. One
does not observe the crossover to dendritic patterns, which is
a strong indication that our off-lattice DLA clusters are iso-
tropic fractal aggregates. Moreover, as reported in Fig. 6,
when investigating the evolution of the mean transverse oc-
cupation histogram for wider and wider strips, the rescaled
transverse profiler̄/ r̄max converges to an asymptotic profile,
when plotted versusy/W, which is different from the con-
jectural profile given by Eq.~2!. As seen in Fig. 3~d!, this
analytical profile inspired from the ensemble-averaged on-
lattice DLA clusters@57# does not account precisely for the
effect of the walls on the actual confinement of the growth in
the central part of the strip. This explains the discrepancy
obtained when estimating the relative widths of the large
occupancy region for on- and off-lattice DLA clusters. Using
Eqs.~3! and~4! to define this region, this amounts to select-
ing the r̄m50.5r̄max contour line for on-lattice DLA clusters
as a consequence of the specific cos2(py/W) shape of the

FIG. 4. The relative widthl of the large occupancy region de-
fined from the criterion~3! and ~4! vs 1/W: d, off-lattice simula-
tions, N51000; s, on-lattice simulations, N51000 (W
516,32,64), 255 (W5128), 480 (W5256), and 50 (W5512). The
symbolsj correspond to off-lattice simulations when defining the
large occupancy region from the 0.6r̄max contour lines@Eq. ~6!#.
The solid line corresponds to the theoretical prediction@Eq. ~7!# for
the relative widthln50(1/W) of the stable smooth ST finger with a
capillary lengthl c54a.

FIG. 5. Statistical analysis ofN51000 on-
lattice DLA clusters of massM52700 grown in
a strip of widthW564. ~a! A realization of the
on-lattice DLA process.~b! The points of the cell
where the mean occupancy is above the average
rate r̄m50.123 ~. r̄max/2! are presented in gray.
The solid line is the shape of the ST analytical
solution of widthl50.51@Eq. ~1!#. ~c! Histogram
of mean longitudinal occupancyr(x,y50). ~d!
Averaged histogram of mean transverse occu-
pancy over 128 sections (xP[100,228]) across
the strip in the steady fractal regime:r̄(y). The
conjectured profile rT(y)5rmaxcos

2(py/W)
@Eq. ~2!# is shown in solid line for comparison.
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mean transverse occupancy profile@Fig. 5~d!#. One then de-
duces that the region of large occupancy defined by the
points of the strip with an occupancy rate above the average
r̄ >r̄max/2 has a relative widthl50.5. This is no longer true
for off-lattice DLA clusters whose asymptotic mean trans-
verse profile has a different shape and therefore a relative
width significantly larger than12 if one uses the same arbi-
trary criteria as for on-lattice simulations. But, as shown in
Fig. 4, if one considers as an alternative definition for the
limit of the region of large occupancy the 0.6r̄max contour
line, one gets estimates of the relative widthl that are quite
similar to those obtained for on-lattice DLA clusters,
namely,l50.50 for strips of width ranging fromW516 to
256. Moreover, as illustrated in Fig. 7~e!, the so-defined
large occupancy region is again remarkably well fitted by the
analytical shape of the stable ST finger. Thus, by considering
the points in the strip with an occupancy rate above some
critical proportion of the maximum occupancy rate~at the
center of the channel!, which turns out to be surprisingly
close to the magic proportion,

r̄ ~x,y!>~1/f!r̄max~x,y50!, ~6!

wheref51.618 is the golden mean, one recovers statisti-
cally the shape of the stable ST finger selected by surface
tension. Therefore, these results once more confirm the deep
connection between viscous fingering and DLA growth.
What is really astonishing here is that going from the stable
finger to unstable fractal patterns, the selection of a solution
seems to survive its instability@57#. Underlying each DLA
realization there is, as a statistical guide, a region of large
occupancy that has the shape and the relative width of the
corresponding stable ST finger. In that respect, our results
indicate that the role of the viscous finger capillary length
scale is played by the particle sizea for DLA clusters. This
is confirmed quantitatively in Fig. 4, where our set of data
for the relative widthl of the ensemble-averaged off-lattice
DLA patterns is compared with the asymptotic theoretical
prediction for the branchln50(B) of stable fingers selected
by surface tension@34–40#:

ln50~B!'
1

2
123S p

7 D 4/3B2/3. ~7!

When identifying the capillary lengthl c to a few particle
sizes (l c,4a) in the expression of the dimensionless param-
eterB5(1/12p2)( l c/W)2, Eq. ~7! provides a remarkable fit
for the numerical data.

In Fig. 7 are also shown the regions of the strip that are
respectively delimited by different contour lines from
0.2r̄max to 0.8r̄max. It is clear that the contour lines corre-
sponding to small occupancy@Figs. 7~a! and 7~b!# signifi-
cantly deviate from the ST finger shape~of corresponding
relative width!, which displays a rather flat tip for largel
that is not reproduced by our ensemble-averaged off-lattice
DLA patterns. The comparison for the highest level curves
of large occupancy@Figs. 7~f! and 7~g!# is made difficult by
some lack of statistical convergence to a smooth finger pro-
file. But from a careful examination of the 0.4r̄max, 0.5r̄max,
and 0.6r̄max contour lines in Figs. 7~c!, 7~d!, and 7~e!, re-
spectively, it is rather delicate to decide whether the 0.6r̄max
level curve plays a privileged role in the sense that it may be
the only one with an exact ST shape. We do not think that
there is hope of answering this question from extensive nu-
merical simulations.

So far, we have mainly considered the region of the mean
occupancy profile, which is invariant by translation and
which corresponds to a region where the growth is no longer
active. As shown in Fig. 8~a!, the histogram of mean longi-
tudinal occupancyr(x,y50) is quite flat in this region up to
some fluctuations due to finite-size effects. When increasing
the massM of the DLA clusters, this inactive zone progres-
sively invades the cell; indeed, when scaled onW, the mean
length of the clusterxF/W turns out to be proportional to its
massM ~xF denotes the position of the active front!. In the
front zone, the falloff ofr(x,y50) accounts for the disper-
sion of the tip position of each DLA realization. As shown in
Fig. 8~c!, the width of this active zone increases during the
growth with a dependenceDF/W;(xF/W)1/2, which is quite
consistent with the behavior observed for on-lattice DLA
clusters@57#. As originally pointed out in Ref.@57#, this can
be understood if one considers the growth process, on the
scaleW, as the successive addition ofn independent bunches
of a fixed number of particles having different configurations
and thus different lengths so that the dispersion of the tip
position be proportional toAn.

B. Mean-field diffusion-limited aggregation

A first attempt to establish a mean-field theory for DLA
growth goes back to the pioneering work of Witten and
Sander@50#. In their original paper, these authors raised the
issue of a general continuous formulation for the time devel-
opment of some ensemble average of DLA clusters. They
proposed the following equations:

]r/]t5¹2u, ~8a!

]r/]t5u~r1a2¹2r!, ~8b!

wherer andu are the mean densities for ‘‘aggregates’’ and
‘‘walkers,’’ respectively, anda is the lattice spacing. Equa-
tion ~8a! is nothing more than the conservation of mass.
Equation~8b! accounts for the growing rule of the ‘‘aggre-
gate’’ field. Unfortunately, as pointed out by Hakim and co-
workers@42#, these equations are not correct in channel ge-

FIG. 6. Evolution of the histogram of mean transverse occu-
pancy for off-lattice DLA simulations in a linear strip of increasing
width. ~a! r̄ vs y/W: W532, 64, 128, and 256 from top to bottom.
~b! r̄/ r̄max vs y/W.
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ometry since there is no steady solution evolving at constant
velocity. Indeed, the longitudinal profile ofr displays a 1/x2

power-law behavior, which explains the interface accelera-
tion.

In order to remedy the insufficiencies of the Witten and
Sander mean-field equations in such a way that they provide
some understanding of the ensemble-averaged on-lattice
DLA patterns found by Arneodoet al. @57#, Brener, Levine,
and Tu @60# ~see also Ref.@100#! have recently proposed

some modification to Eq.~8!. This modification consists in
replacingr by rg in Eq. ~8b!:

]r/]t5¹2u, ~9a!

]r/]t5u~rg1a2¹2r!. ~9b!

As argued in Ref.@60#, taking g greater than 1 is a way,
among others, to introduce a cutoff in the growth rate at

FIG. 7. Statistical analysis ofN51000 off-
lattice DLA clusters of massM524 000 grown
in a strip of widthW5256. In gray are repre-
sented the points of the cell where the mean oc-
cupancy is above 0.2r̄max ~a!, 0.3r̄max ~b!,
0.4r̄max ~c!, 0.5r̄max ~d!, 0.6r̄max ~e!, 0.7r̄max ~f!,
and 0.8r̄max ~g!. The solid lines correspond to the
ST finger analytical solution of relative width
l50.73 ~a!, 0.67 ~b!, 0.61 ~c!, 0.56 ~d!, 0.49 ~e!,
0.41 ~f!, and 0.31~g!.

53 6207STATISTICAL ANALYSIS OF OFF-LATTICE DIFFUSION- . . .



small density that will mimic the fact that in the DLA model,
growth cannot occur with an infinitesimal fluctuation ofr.
Therefore, as compared to Eq.~8!, Eq. ~9! is likely to ac-
count for the discrete character of the DLA model, where the
diffusing particle only sticks to the aggregate when it over-
laps a cluster particle. Moreover, since DLA growth imposes
working with constant flux, i.e., with a finite slope of theu
field at infinity, the presence of this cutoff prevents any ar-
bitrarily small fluctuation in front of the growing front to
start developing and thereby keeps the front from accelerat-
ing indefinitely.

Encouraged by the very promising results obtained by
Brener, Levine, and Tu@60#, we have reproduced in Fig. 9
the results of some simulations that demonstrate clearly the
capability of the mean-field Eq.~9! to display steady-state
growth in a channel geometry. On the lateral boundaries of
the strip, we have imposed Neuman conditions for theu field
and Dirichlet condition for ther field:

]u

]yU
y56W/2

50 ~10!

FIG. 8. ~a! Statistical analysis ofN5255 off-
lattice DLA clusters grown in a channel of width
W5256. The histogram of mean longitudinal oc-
cupancy is shown at different stages of growth:
M51000n, for n51,2,...,24. ~b! Longitudinal
profile of the ‘‘aggregate’’r field as computed
with the MFT equations~9!–~12! at different
stages of growth:t55n, for n51,2,...,22; the
model parameters arew51, g52, a51, and
W520. ~c! Width of the active front zoneDF vs
xF
1/2, wherexF is the location of this front, ex-

tracted from the off-lattice DLA simulations.~d!
DF vs xF for the MFT calculations.

FIG. 9. Mean-field calculations of the aggre-
gate field distribution in a channel geometry with
the model parameters:w51, g52, a51, and
W520. ~a! Three-dimensional representation of
r(x,y). ~b! Contour plots forr, the levels are
0.10, 0.20, 0.30, 0.40, and 0.50 from the outer to
the inner.~c! In gray are shown the points of the
channel where ther density is above the average
rate r̄m50.276. The continuous line is the shape
of the ST analytical finger of widthl50.55.
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and

ruy56W/250. ~11!

At the far end extremity of the strip, we have fixed the flux
of the walkers:

]u

]xU
x5L

5w. ~12!

The numerical procedure used to simulate Eq.~9! is in the
spirit of the quasistatic approximation that underlies the deri-
vation of these mean-field equations@60#. Given an initial
distribution for r, one solves the spatially forced Poisson’s
equation:

~2¹21rg1a2¹2r!u50. ~13!

Then, from the distribution ofu, one computes]r/]t from
Eq. ~9a!, and ther field can be advanced in time. In order to
account for the symmetry about the center of the channel
inherent to the averaging over many DLA clusters, one can
easily enforce this symmetry in the mean-field simulations
by starting from an initial condition for ther field, which is
invariant under this symmetry. The evolution under Eq.~9!
actually preserves this symmetry.

The mean-field approach proposed by Brener, Levine, and
Tu @60# depends,a priori, upon four parameters: the fluxw,
the cutoff exponentg, the lattice spacinga, and the channel
widthW. However, if one rescales the time and theu field as

t5w21t̃, u5wũ, ~14!

one can fix the flux,

w51, ~15!

without modifying Eq.~9!. Let us note that fixing the flux to
1 is quite reasonable since it amounts to identifying the mass
to the time in the discrete DLA model. Now one can further
rescale time, space, and ther andu fields in the following
way:

t5ag/222t̂, x5ag/2x̂, y5ag/2x̂,

r5a22r̂, u5ag/2û, ~16!

which allows us to keepw51 and to fix the value of the
lattice spacing to unity:

a51. ~17!

In the simulations presented in this section, the widthW of
the channel will therefore be expressed in lattice spacing
units. Let us note at this point that the two rescaling trans-
formations~14! and~16! do affect the aggregate fieldr; this
remark will be of fundamental importance in the following
when we will compare the MFT predictions to the ensemble-
averaged DLA patterns.

We have thus performed simulations for various values of
g andW. We have tested the convergence of our numerical
code according to the spatial resolution in both thex andy
directions. Most of the results reported below correspond to
lattices of sizeL340, whereLP[50,200] is adjusted accord-

ing to the values of the parametersg andW. As seen in Fig.
9, for the parameter values extracted from Ref.@60#, namely,
g52 andW520, ther density distribution displays similar
characteristics to the mean occupancy of off-lattice DLA
clusters in Figs. 1, 2, and 3. After some initial transient pe-
riod, the active front zone leaves an inactiver profile behind
it, which displays translational invariance. This is seen
clearly both on the contour plots in Fig. 9~b!, which have a
finger shape, and on the longitudinalr profile in Fig. 8~b!,
which is constant before the falloff to zero ahead of the
growth. From the transverser profile shown in Fig. 10~a!,
we have represented in grey in Fig. 9~c! the points of the
channel with a density that exceeds the average rater̄m de-
fined in Eqs.~3! and ~5!. Very much like the ensemble-
averaged off-lattice DLA patterns in Figs. 1~b! and 3~b!, the
boundary of this region of large occupancy is very well fitted
by the analytical ST solution of relative widthl50.55 ~note
that very much like for the ensemble-averaged DLA patterns,
not all the contour plots have the ST finger shape!. This is
without any doubt a very encouraging observation. Never-
theless, in order to conclude as to the relevance of this mean-
field theory, one needs to proceed to a more quantitative
comparison.

In Fig. 10 are shown the transverser profiles computed
with g52 for different values of the channel widthW. Two
main features characterize the evolution of these profiles.
First, the maximum valuermax at the center of the channel
decreases when increasingW @Fig. 10~a!#; we will come
back to this point for the fractal analysis carried out in Sec.
II C. Then, the shape of the transverser density evolves
from a smooth to a steeper profile@Fig. 10~b!#; the interme-
diate region between the large occupancy region in the center
of the channel and the small occupancy regions near the
walls becomes narrower with increasingW. As shown in Fig.
11, the relative widthl of the large occupancy region de-
fined as in Fig. 9~c! actually decreases from values that are
significantly larger than12 for narrow strips~l50.5560.01
for W520! to values that approach12 for wider strips ~l
50.5260.01 forW560!. Indeed, as illustrated in Fig. 10~b!,
the rescaled mean transverse profiler̄/ r̄max(y/W) does not
seem to converge to any asymptotic profile as observed nu-
merically for the ensemble averages of both on-lattice and
off-lattice DLA patterns~this observation does not preclude
the possibility of some convergence for very wide strips of

FIG. 10. Mean-field calculations of the transverse profile of the
r field with the model parameters:w51, g52, a51. ~a! r vs y for
channels of widthW532, 64, 128, and 256 from top to bottom.~b!
r/rmax vs y/W.
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widthW much larger than those achieved with our computer
capabilities!. Consequently, there is no indication that the
relative widthl of the large occupancy region defined from
the criterion given by Eqs.~3! and ~4! as well as from any
contour line converges to the asymptotic valuel51

2 pre-
dicted for the stable ST finger in the limit of zero surface
tension@33–40#. There is no evidence thatl converges to
any finite value either larger or smaller than12.

In Fig. 12, we have investigated the behavior of the trans-
verser profile when varying the cutoff parameterg for a
fixed valueW564 of the width of the channel. When in-
creasingg, rmax increases@Fig. 12~a!# while, as seen in Fig.
12~b!, the rescaled mean transverse occupancy histogram
evolves towards a step-function profile characteristic of
stable fingers. This observation is quite consistent with the
remark of Brener, Levine, and Tu@60# that in the limiting
case whereg→1` anda→0 ~or W→1`!, the MF equa-
tions become exactly the Saffman-Taylor problem at zero
surface tension. For each of theg values considered in Fig.
12, we have further analyzed the dependence of the trans-
verser profile as a function ofW. At a qualitative level,
whatever the value ofg, one recovers the same characteristic
features as observed forg52 in Fig. 10. At a quantitative
level, we have reported in Fig. 11 the estimate of the relative

width l of the large occupancy region (r. r̄m) versus 1/W.
For each value ofg, l systematically decreases when in-
creasingW. For a given value ofW, l apparently decreases
when increasingg : for the mean transverse profiles shown
in Fig. 12 forW560, one obtains preciselyl50.54~g51.2!,
0.52 ~g51.6!, 0.52 ~g52!, and 0.48~g55!.

As pointed out by Brener, Levine, and Tu@60# in their
original paper, this mean-field approach has an intrinsic
problem that, to our knowledge, is not yet understood: it fails
to reproduce the spreading of the active front zone during
DLA growth @57#. In Fig. 8, the evolution of the longitudinal
profile of the aggregate field in the mean-field theory@Fig.
8~b!# is compared to the histogram of mean longitudinal oc-
cupancy in DLA simulations@Fig. 8~a!#. As shown in Fig.
8~d!, the width of the front zoneDxF computed with the
mean-field equations does not display any time dependence,
a result that is in contradiction with the scaling behavior
DxF;M1/2;x F

1/2 observed in Fig. 8~c! for the DLA simula-
tions. This failure is, without any doubt, one of the main
weaknesses of the mean-field approach proposed~so far! for
diffusion-limited aggregation.

C. Fractal analysis

The next step of our study is to demonstrate that the frac-
tal dimension of the DLA clusters can be extracted from the
W dependence of the mean occupancy distribution. As pre-
viously pointed out@57–59#, from the translational invari-
ance of this distribution along the growth axis, one deduces
readily that the mass has a one-dimensional component in
the 0x direction that behaves as

ML~x!}xDL with DL51, ~18!

whereDL is the longitudinal partial dimension~consistently
we have seen in Fig. 8 that the position of the growing front
behaves asxF}M !. Obviously, the geometrical fractality of
the patterns has to come from the direction perpendicular to
the channel axis@82,101#. The computation of the area of the
mean transverse occupancy profile as a function of the width
of the channel gives the transverse partial dimensionDT :

A~W!5MT~W!}WDT, ~19!

and in turn, from the trivial behavior in the longitudinal di-
rection @Eq. ~18!#, the fractal dimensionDF is @102#

DF5DT11. ~20!

From the mean transverse occupation histograms com-
puted from on-lattice and off-lattice simulations, for various
channel widthsW ranging from 16 to 256, we have calcu-
lated the areaA(W) of each histogram and we have plotted
in Fig. 13 A(W)W}WDF as a function ofW in a log-log
representation. Both the on-lattice and off-lattice data re-
markably fall on a straight line; the dashed lines in Fig. 13
are lines of slope 1.6660.01, which provide an excellent fit
of the two sets of data. One thus gets a value of the fractal
dimension,

DF51.6660.01, ~21!

FIG. 11. Mean-field calculations of the relative widthl of the
region of large occupancy defined as in Fig. 9~c!, for various values
of the cutoff parameterg. The model parameters arew51 and
a51. l is plotted vs 1/W. The symbols correspond tog51.2 ~d!,
1.6 ~j!, 2 ~s!, and 5~h!.

FIG. 12. Mean-field calculations of the transverse profile of the
r field with the model parameters:w51, a51,W564. ~a! r vs y
for g51.2, 1.6, 2, and 5 from bottom to top;~b! r/rmax vs y/W.
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for both on-lattice@57,59# and off-lattice DLA clusters that
matches perfectly the theoretical prediction@103–105#
DF5(d211)/(d11) ~5 5

3! derived from some mean-field
scaling arguments~see also Refs.@106,107#! applied to
diffusion-limited aggregation in dimensiond(52). Let us
note that this estimate@Eq. ~21!# lies between previous box-
counting measurements of the fractal dimension
DF51.6360.03 of off-lattice DLA clusters grown in open
circular geometry @74,75,108–110# and the well-known
value DF51.7160.02 obtained from the evolution of the
radius of gyration@50,51,108,109#. This discrepancy might
also indicate some morphological difference between DLA
patterns grown in confined or in open geometry. One cannot
also exclude the possibility of some weak multifractal depar-
ture from statistical homogeneity@111#.

In Fig. 13 are also reported the results obtained from the
W dependence of the transverse profile of the aggregater
field computed with the mean-field equations~9!, ~10!, and
~11! for the parameter valuesw51, g52, anda51. The data
again fall nicely on a straight line but the slope,
DF51.5860.01, is significantly smaller than the value53 ob-

tained in the DLA simulations. In Fig. 14 are shown the
results of a more systematic investigation of the fractal di-
mensionDF when varying the cutoff parameterg. Contrary
to what was suggested by Brener, Levine, and Tu@60#, DF is
sensitive to the value ofg. As shown in Fig. 14~b!, the
DF(g) curve is likely to present a minimum for a valueg*
surprisingly close to the valueg52 ~quadratic term!. Since
this minimum is smaller than53, this means that there exist
two values ofg for which the mean-field equations account
for the fractal dimension observed in the DLA simulations,
namely,g;1.6 and 4.2. But unfortunately, as seen in Fig. 15
for g51.6, when the mean-field theory predicts the right
fractal dimension, i.e., the actualW dependence of the area
of the mean transverse occupancy profile, it dramatically
fails to reproduce the exact shape of this transverse profile.
Indeed, the transverser profile has a much steeper profile for
g51.6 ~and an even more pronounced steplike profile for
g54.2, as previously discussed! than the numerical profiles
computed with either the on-lattice or the off-lattice DLA
algorithms. This is the demonstration that when pushing the
comparison beyond some~spectacular! qualitative agree-
ment, the mean-field theory, as formulated in Eq.~9!, actu-
ally presents some severe deficiencies with respect to the
modeling of ensemble-averaged DLA patterns.

To conclude this section, let us remark that what gives the
value of the fractal dimensionDF5 5

3 is mainly theW de-
pendence of the heightrmax of the mean transverse occu-
pancy. From the definitions~3! for on-lattice DLA clusters or
~6! for off-lattice DLA clusters, of the region of large occu-
pancy, the area of the transverse occupancy profile is equal
to the area of a step function profile of widthlW and height
rmax:

A~W!5rmaxlW}WDT. ~22!

Since we have seen in Fig. 4 thatl is practically equal to 0.5,
up to terms of order (1/W)4/3, one deduces from Eq.~22! that

rmax}W
DT21}W21/3. ~23!

We have checked this scaling law with a good accuracy for
both the on-lattice@57,59# and off-lattice DLA simulations.
This scaling law is also rather well verified by the mean-field
numerical results forg51.6 and 4.2. This can be understood
by the fact that, despite the uncertainty concerning the exist-
ence of an asymptotic limit value, the relative widthl does

FIG. 13. Estimate of the fractal dimensionDF of DLA clusters
from the computation of theW dependence of the areaA(W) of the
mean transverse occupancy histogram.A(W)W is plotted as a func-
tion of W in logarithmic scales. The dashed lines correspond to
straight lines of slope53. Off-lattice ~d! and on-lattice~s! simula-
tions are compared to mean-field theory calculations~j! of the
transverser profile for the parameter valuesw51, g52, anda51.
The solid line corresponds to a fractal dimensionDF51.58.

FIG. 14. Mean-field estimate of the fractal di-
mensionDF of DLA patterns~see Fig. 13! as a
function of the cutoff parameterg. ~a! A(W)W vs
W in logarithmic scales; the symbols have the
same meaning as in Fig. 11:g51.2 ~d!, 1.6 ~j!,
2 ~s!, and 5 ~h!; the solid lines correspond to
linear regression fit estimate ofDF . ~b! DF vs g.
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not vary too much when increasing the width of the strip
fromW516 to 128 as reported in Fig. 12.

III. SECTOR GEOMETRY

A. Off-lattice DLA simulations

To conduct DLA simulations in sector geometry, we have
mainly used the efficient off-lattice algorithm designed in a
previous work for simulating DLA growth in circular geom-
etry @73–75#. Initially a seed particle is located at the origin
and the diffusing particles are launched at a random position
from a circle of radiusrmax1l , wherermax is the maximum
radius of the growing cluster andl has a value of a few
particle diameters~practically l53a!. Then, in order to al-
low the particle to take large jumps, we have followed the
very efficient strategy of hierarchical off-lattice algorithms as
described in Sec. II A. According to standard practice
@50,51#, we have introduced an escape circle of radius
r c54rmax, beyond which the diffusing particle is lost. The
sticking rule requires some overlap of the diffusing particle
with the cluster, as characterized by an overlap parameterd
where 0<d<1; as defined in Sec. II A, smalld values corre-
spond to slight overlappings. In this section, we will mainly
consider sector-shaped cells of angleu052p/2p. This will
allow us to avoid the very time consuming reflection prob-
lem on the side walls of the wedge@73#. Indeed, we just have
to run the off-lattice algorithm in circular geometry, letting
the particle diffuse from one sector to the next until it sticks
to the cluster. Then, instead of sticking this particle at its
arrival site only, we also stick a particle at each of its sym-
metric sites in the other 2p21 sectors. In this way, we will
simultaneously grow 2p identical clusters in 2p complemen-
tary wedges of sector angleu05p/p. For wedges of arbi-
trary angleu0, we will alternatively proceed to the computa-
tion of the exact position of the diffusing particle after each
reflection on the side walls. In Figs. 16~a! and 16~b! are
shown two DLA clusters of massM52000 and 12 000,
grown using this hierarchical off-lattice algorithm in two
wedges of respective angleu0530° and 120°.

As in linear geometry, our statistical analysis of off-lattice
DLA clusters in a wedge consists in measuring the mean
occupancy r(r ,u) of each site of the cell, where
uP@2u0/2,u0/2#. In a given wedge of angleu0, we therefore
grow N aggregates with the same total numberM of par-

ticles. Since the local width of the cellW5ru0 increases
during the growth, for eachu0 we thus need to investigate
several values ofM in order to characterize the unsteadiness
of this nonequilibrium dynamical process. When averaging
over 2000 DLA clusters of the type shown in Fig. 16~a!, we
obtain the mean occupancy distribution represented under
various forms in Fig. 17. This distribution is typical of
ensemble-averaged DLA patterns at some early stage of
growth in a small-angle wedge. The contour plots in Fig.
17~b! have a well-defined finger shape of fixed relative width
l. As seen on the mean azimuthal occupancy histograms
r~r5R, u! for various values ofR in Fig. 17~d!, the mean
occupancy histogram in Fig. 17~a! is maximum along the
bisector~u50!. Again, most of the growth is concentrated in
the central part of the cell. Moreover, beyond some initial
transient regime in the inner region of the wedge~close to
the apex where the growth is strongly affected by finite-size
effects!, the mean radial occupancy histograms clearly de-
crease as a power law~u50! when moving away from the
apex, as shown in Fig. 17~c!. This rarefaction comes with
some spreading of the overall occupancy histogram in Fig.
17~a!, which is a characteristic feature of DLA growth in an
open sector geometry. In this intermediate inactive region,
which precedes the falloff in the active front zone, the mean
azimuthal occupancy histograms computed at different radii
R can be rescaled onto a unique profile as illustrated in Fig.
18~a!. This allows us to define a mean angular relative width
for the ensemble-averaged DLA patterns:

l~r !5
u1~r !2u2~r !

u0
, ~24!

whereu6(r ) on each side of the bisector~u50! can be de-
fined according to either a criterion similar to Eq.~3! for
on-lattice DLA simulations in a channel,

u6~r !5
1

rmax~r ,u50! (
2u0/2

1u0/2

r~r ,u!, ~25!

or a criterion in the spirit of Eq.~6! deduced from off-lattice
DLA simulations in linear geometry:

r„r ,u6~r !…5
1

f
r~r ,u50!. ~26!

FIG. 15. Comparison of the shape of the mean transverse occu-
pancy profile for off-lattice DLA clusters~---! with the prediction of
the mean-field equation~9! ~—! for the parameter valuesw51,
g51.6, anda51. ~a! W564; ~b! W5128.

FIG. 16. Off-lattice DLA clusters grown in a wedge of angleu0.
~a! u0530°;M52000; ~b! u05120°;M512 000.
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Whatever the criterion one uses, the relative angular widthl
is found larger than12. When using Eq.~25!, one gets a value
l50.6560.02 for off-lattice DLA clusters, which is again
significantly larger than the estimatel50.5860.03 obtained
for a similar statistical sample ofN52000 on-lattice DLA
clusters of the same mass@29,57#. But what is still very
impressive is the agreement observed in Fig. 17~e! between
the region of large occupancy defined by selecting the points
of the sector cell such thatr(r ,u)>r„r ,u6(r )… and the self-
dilating finger shape of the same relative angular widthl
calculated analytically by Ben Amar@46# in the absence of

surface tension. Let us further point out that the numerical
value l;0.65 is quite compatible with the relative width
predicted for stable fingers belonging to the branch
ln50(u0530°,B) selected by surface tension@46#, provided
one identifies the capillary lengthl c to a few particle sizes as
previously pointed out in linear geometry. It is not such a
surprise that the cell geometry should determine the large-
scale shape of the profile of mean occupancy. It is a very
striking result, however, that the selected solution should be
reminiscent of the stable one. In sector-shaped cells, when
the structure diverges from the apex, a fractal structure builds
up in a larger and larger range of scales betweenl c andru0 .
During this buildup it seems to retain the same sensitivity to
both the large and the small scales. In other words, the se-
lection action of the microscopic length scale is likely to act
through the entire range, up to the largest scale of the pattern.

When opening the wedge angleu0, one observes some
drastic change in the shape of the mean occupancy distribu-
tion as shown in Figs. 19 and 20 foru0590° ~N52000,
M53000! and 120° ~N52000, M512 000!, respectively.
When increasingu0, the mean profile becomes flatter in the
center of the cell with a steeper decrease to zero on both
sides of this central plateau. This evolution is clearly illus-
trated in Fig. 19~d! where the mean azimuthal occupancy
histograms computed at different radii foru0590° all display
a very pronounced steplike profile. Simultaneously, the con-
tour plots in Fig. 19~b! become flatter in their most advanced
part away from the apex. Moreover, as shown in Fig. 20, if
one keeps increasingu0, a topological change is observed on

FIG. 17. Statistical analysis of off-lattice
DLA clusters of massM52000 grown in a
wedge of angleu0530°. Our statistical sample
involvesN52000 aggregates similar to the one
shown in Fig. 16~a!. ~a! Three-dimensional rep-
resentation of the mean occupancyr(r ,u). ~b!
Contour plots forr; the levels correspond to
0.025n for n51–10 from outer to inner.~c! His-
togram of mean radial occupancyr(r ,u5Q) for
Q50°, 5°, 10°.~d! Histogram of mean azimuthal
occupancyr(r5R,u) for different radiiR. ~e! In
gray is represented the region of large occupancy
as defined in Eqs~24! and ~25! ~see text!; in the
active front zone the selected points satisfy
r(r ,u)>r„Rmax,u

6~Rmax!…, where Rmax5180
delimits the frozen region where the growth has
ceased. The solid line corresponds to Ben Amar’s
analytical solution of relative widthl50.65.

FIG. 18. Rescaled mean azimuthal occupancy histogramr(r
5R,u)/r(r5R, u50! for various radii.~a! u0530°: R5400 ~—!,
500 ~---!, and 700~—!. ~b! u0560°:R525 ~—!, 125 ~---!, and 225
~—!. In both ~a! and ~b!, our statistical sample involvesN52000
off-lattice DLA clusters of massM52000 and 12 000, respectively.
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the mean occupancy distribution. Two lobes emerge on both
sides of this distribution, one symmetric with the other with
respect to the bisector as a result of the averaging procedure
over many DLA realizations~let us note that the appearance
of these two lobes could have already been guessed from a
careful examination of Fig. 19 foru0590°, where this phe-
nomenon is on the verge of emerging!. Then, as shown in
Figs. 19~c! and 20~c!, the mean radial occupancy histograms
r(r )5r(r ,u5Q) computed for different values ofQ cross
through each other near the center of the sector; this phenom-
enon has been called ‘‘profile crossing’’ in Ref.@61#. Unlike
the channel case, the mean azimuthal histogramsr~r5R, u!
computed for various radiiR in Fig. 20~d! have a bimodal
profile with two maxima that have emerged on the edges of
the plateau and a minimum at the centeru50. This is a clear
indication that the growth probability is no longer maximum
along the bisector. Although the stiffness of the mean azi-
muthal profile allows us to define a mean relative angular
width l occupied by our ensemble-averaged DLA patterns,
the fact that these profiles are no longer unimodal makes
rather questionable the definition of a mean finger shape to
be compared with the analytical solutions of Ben Amar@46#.
Indeed, as seen in Fig. 20~b!, while the different contour
plots have almost the same relative angular widthl;0.77
60.03, they have drastically different shapes. The lowest
level curves corresponding to small occupancy~r<0.1! have
the shape of a single finger, but they differ from Ben Amar’s
analytical solutions since they are much flatter in the front
zone @112# @see the direct comparison in Fig. 19~e! for

u0590°#. The highest level curves of large occupancy have a
different shape, which qualitatively resembles a viscous fin-
ger pattern after tip splitting@21,28# @Fig. 20~e!#. Thus the
comparison of these contour plots with Ben Amar’s self-
dilating finger solutions is no longer pertinent.

In fact, if, for a given value of the wedge angleu0, one
averages~unlike in Fig. 17! over DLA clusters of larger and
larger mass, ultimately one will reach a value ofM for which
the mean-occupancy distribution will display the transition
from a unimodal to a bimodal profile in the frozen region
behind the active front zone. Then, as shown in Fig. 18~b!
for u0560°, the mean azimuthal occupancy histograms com-
puted at different radiiR can no longer be rescaled onto a
unique profile. This indicates that for a given wedge angleu0
and a given massM large enough, the shape of the mean
occupancy distribution constantly evolves from a unimodal
towards a bimodal profile. Therefore the search of a mean
single finger shape underlying the unstable DLA growth in a
wedge is no longer justified. Actually, the mean occupancy
distribution is likely to retain some memory of the whole set
of stable fingers that belong to the branchln50(u,B) se-
lected by surface tension up to the critical valueBc where
this branch collides with the unstable branchln51(u,B) and
disappears@46–49#. Once the size of the finger goes beyond
this merging threshold, tip splitting occurs and there is no
stable smooth finger in the sector geometry for smallB ~i.e.,
largeW5ru0!. The topological change from a unimodal to a
bimodal profile of the mean occupancy distribution can thus
be seen as the footprint of the tip-splitting instability of vis-

FIG. 19. Statistical analysis ofN52000 off-
lattice DLA clusters of massM53000 grown in
a wedge of angleu0590°. Same representations
as in Fig. 17. In~e! the contour plotr50.176 that
delimits the shaded region is compared to Ben
Amar’s analytical solution of relative angular
width l50.77 ~solid line!.
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cous fingers growing in a wedge. Since this branch merging
is induced by surface tension, its indirect observation on the
ensemble-averaged DLA patterns confirms the selective role
of the microscopic length scale, i.e., the particle size, in DLA
growth.

From a statistical point of view, one can try to interpret
the global shape of the mean occupancy distribution as the
superposition of many realizations, some of which corre-
spond to a single main fractal branch that is well developed
in the central part of the wedge, while some others are
mainly made of two main branches that have grown on either
side of the bisector. The latter realizations being obviously
shorter since the total mass is shared by two branches could
explain the presence of the two lobes in the inner frozen
region of r(r ,u) @Fig. 20~a!#. In the active front zone, the
mean azimuthal histogram recovers a unimodal profile@Figs.
19~d! and 20~d!# since most of the realizations that contribute
so far away from the apex consist in DLA clusters that have
not produced secondary fractal branches. Actually, as dis-
covered in Refs.@74,75,113,114#, the inner frozen region of
DLA clusters is likely to display a statistically predominant
Fibonacci structural ordering. One can therefore expect to
observe some further topological changes~some further
branchings in the contour plots! in the mean occupancy pro-
file when further increasing the massM . However, some
specific treatment on each realization is required in order to
prevent the averaging procedure to restore the symmetry
with respect to the bisector. This work is currently in
progress.

For the sake of comparison, we have reproduced our sta-
tistical analysis of DLA clusters in a wedge using an on-
lattice algorithm@57#, the bisector being one of the axes of
the underlying square lattice. For small sector angles and
small mass clusters, the mean occupancy distribution does
not seem to be very much affected by the lattice anisotropy.
This is no longer the case if one increases the massM . As
shown in Fig. 21, for a wedge angleu05120°, the presence
of the underlying lattice favors the growth along the lattice
axis, thereby inhibiting the transition to a bimodal mean oc-
cupancy distribution@61#. The mean radial histograms no
longer display the ‘‘profile crossing’’ phenomenon observed
for off-lattice DLA simulations@Fig. 21~c!#. The mean azi-
muthal histograms have again a unique maximum at the cen-
ter u50 @Fig. 21~d!#. The contour plots in Fig. 21~b! have a
squarelike shape similar to the petal shape of anomalous vis-
cous fingers in the presence of fourfold anisotropy@115,116#.
When proceeding to large-mass simulations, one can check
that the mean relative widthl of these ensemble-averaged
DLA patterns, calculated using Eq.~24! with either Eq.~25!
or Eq.~26! to defineu6(r ), systematically decreases towards
zero when going away from the apex. This anisotropy-
induced stabilization of the ‘‘normal’’ unimodal pattern with
maximum density always along the bisector regardless of the
distance of the apex is again very reminiscent of what is
theoretically predicted and experimentally observed for
stable viscous patterns. Ben Amar has shown in Ref.@115#
that adding a sufficient anisotropy can eliminate the branch
merging phenomenon and allow the stable finger solution

FIG. 20. Statistical analysis ofN52000 off-
lattice DLA clusters of massM512 000 grown
in a wedge of angleu05120°. Same representa-
tions as in Fig. 17. In~e! the contour plot
r50.196 that delimits the shaded region is com-
pared to Ben Amar’s analytical solution of rela-
tive angular widthl50.77 ~solid line!.

53 6215STATISTICAL ANALYSIS OF OFF-LATTICE DIFFUSION- . . .



branch ln50(u0 ,B) to survive in the limit B→0 ~i.e.,
W5ru0→1`!. Actually ln50(u0 ,B) is predicted to con-
verge to zero in this asymptotic limit. Anomalous viscous
fingers growing in a wedge are therefore stabilized with re-
spect to tip splitting by anisotropy. We are claiming only that
the ensemble-averaged on-lattice DLA structures are also
sensitive to these considerations.

B. Mean-field diffusion-limited aggregation

The generalization of the mean-field approach described
in Sec. II B from channel to radial geometries was first per-
formed by Levine and Tu in Ref.@61#. For sectors, the mean-
field equation~9! takes the following form when using polar
coordinates:

]r

]t
5S 1r 2 ]2

]u2
1

]2

]r 2
1
1

r

]

]r Du, ~27a!
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]u2
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]2

]r 2
1
1

r

]

]r D rG . ~27b!

Again, we impose Neuman boundary conditions for theu
field:

nW •¹W uuu56u0/2
50, ~28!

wherenW is the normal to the side walls and Dirichlet condi-
tion for ther field:

ruu56u0/2
50. ~29!

As r→1`, we impose that]u/]r5c/r , wherec is the rate
at which particles are being released. Practically, we fix the
flux of the ‘‘walkers’’ at the far end extremity of the wedge:

]u

]r U
r5L

5
w

L
. ~30!

As in linear geometry, from some adequate rescalings oft, r ,
and the fieldsr andu, one can fix the lattice spacing and the
flux to unity: a5w51.

In this section, we report the results of the numerical in-
tegration of Eq.~27! with the boundary conditions~28!, ~29!,
and ~30! for various values ofg andu0, which are the only
free parameters left to this mean-field approach. The resolu-
tion used to compute ther and u fields is similar to those
previously considered for linear strips: in polar coordinates
(r ,u), we use lattices of sizeL340, whereLP[50,200] is
adjusted according to the final size of the mean growth one
intends to achieve. Also, we explicitly impose symmetry
about the bisector by starting from an initial condition for the
r field that is invariant under this symmetry. The numerical
procedure is again based on the fact thatu is a ‘‘passive’’
field without any proper dynamics. At a fixed time, we can
thus findu directly from ther field; we then updater and
continue.

FIG. 21. Statistical analysis ofN51000 on-
lattice DLA clusters of massM56000 grown in
a wedge of angle u05120°. ~a! Three-
dimensional representation of the mean occu-
pancyr(r ,u). ~b! Contour plots forr; the levels
correspond to 0.025n for n51–10 from outer to
inner. ~c! Histogram of mean radial occupancy
r~r5R, u5Q! for different values ofQ. ~d! His-
togram of mean azimuthal occupancyr(r5R,u)
for different radii R. ~e! The contour plot
r50.137 that delimits the shaded region is com-
pared to Ben Amar’s analytical solution of rela-
tive angular widthl50.75 ~solid line!.
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In Figs. 22 and 23 are reported the numericalr profiles
computed with the mean field equation~27! for two wedges
of respective angleu0530° and 120°. The value of the cutoff
parameter isg52 as in Ref.@61#. In the small-angle wedge
~Fig. 22!, after some transients, the aggregate fieldr starts
developing with a rather compact fingerlike profile that is
very similar to the shape of the mean occupancy distribution
of off-lattice DLA clusters in the early stage of growth~Fig.
17!. As seen on both the radial profiles@Fig. 22~c!# and the
azimuthal profiles@Fig. 22~d!#, the r density is maximum
along the bisector. The former decreases smoothly when one
moves radially away from the apex until one reaches the
exponential falloff in the active front zone. The latters dis-
play a unimodal characteristic shape centered atu50. As
shown in Fig. 24~a!, these azimuthalr profiles computed at
different radii in the frozen region are nearly self-similar
since they can be almost rescaled onto a unique profile.
Therefore, one can reasonably use either the criteria~25! or
~26! to define a mean relative angular widthl @Eq. ~24!# of
the r density. When using Eq.~25!, one gets the value
l50.6760.01, which is in remarkable quantitative agree-
ment with the estimate obtained for ensemble-averaged off-
lattice DLA patterns in Fig. 17. In Fig. 22~e!, the region of
larger density~solid line! as defined by selecting the points
of the sector cell such thatr(r ,u)>r„r ,u6(r )… is compared
to Ben Amar’s analytic finger solution~dashed line! of equal
relative angular width in the absence of surface tension@46#;

the two profiles are indistinguishable. Moreover, they pro-
vide a very good fit of the boundary of the large occupancy
region of off-lattice DLA clusters~shaded area!; let us note
that this self-similar region has been rescaled from Fig. 17~e!
to Fig. 22~e! in order to position its tip at the same location
as the tip of the mean mean-field finger. More generally, the
contour plots of ther density in Fig. 22~b! are quite compa-
rable to the finger-shaped level curves of the ensemble-
averaged DLA pattern in Fig. 17~b!.

If one proceeds to more time consuming simulations of
the mean-field equation, one realizes very quickly that the
self-similar regime observed in the early stage of growth is
nothing more than a transient phenomenon. Indeed, the pro-
file of ther field in the frozen region constantly evolves from
a unimodal to a bimodal profile. This is illustrated in Fig.
24~b! where the azimuthalr profile calculated in a cell of
angleu0560° becomes flatter and flatter at the top when one
moves further away from the apex, until one goes beyond
some critical radius where two shoulders appear on the edges
of this steplike profile. This topological transition is strik-
ingly similar to the one observed in ensemble-averaged DLA
patterns in Fig. 18~b!. The larger the angle of the cell, the
smaller the critical radius, i.e., the sooner the morphological
transition from a unimodal to a bimodalr profile takes place.
When comparing the results of the mean-field calculations
for u05120° in Fig. 23 to the corresponding mean occupancy
DLA distribution in Fig. 20, one observes similar features

FIG. 22. Mean-field calculation of ther field
distribution in a wedge of angleu0530°; the
model parameters arew51, g52, a51. ~a!
Three-dimensional representation ofr(r ,u). ~b!
Contour plots forr; the levels are 0.01n for
n51–10 from outer to inner.~c! Radial density
profiles: r(r ,u5Q) for Q50°, 5°, and 10°.~d!
Azimuthal density profiles:r(r5R,u) for differ-
ent radiiR. ~e! In gray is represented the region
of large DLA occupancy@Fig. 17~e!#; the solid
line corresponds to the mean-field calculation of
the boundary of this region; Ben Amar’s analyti-
cal finger of widthl50.65 is represented by the
dashed line.
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that are characteristic of this morphological transition. The
radial r profile in Fig. 23~c! presents the profile crossing
phenomenon detected in Fig. 20~c!. The azimuthalr profiles
in Fig. 23~d! are no longer maximum but are minimum at the
center; they display two maxima symmetric with each other
with respect to the center as observed in Fig. 20~d!. The
contour plots in Fig. 23~b! have drastically different shapes
as in Fig. 20~b!: the lowest level curves of smallr density
have the shape of very flat fingers, while the highest level
curves of larger density have a tip-splitted finger shape. As
shown in Fig. 23~e!, these highest level curves are quite
comparable with the highest contour plots of the mean occu-
pancy of off-lattice DLA clusters and obviously clearly differ

from Ben Amar’s analytical solutions. Indeed none of ther
contour plots corresponds to a member of Ben Amar’s solu-
tion family @46#. This is not suprising since, as previously
discussed, there is no stable smooth finger in the sector ge-
ometry for smallB, i.e., in the limit of large size, because of
intrinsic tip-splitting instability@20,46#. The results reported
in this section show that in this unstable regime, while the
comparison of the ensemble-averaged DLA patterns with ST
finger profiles no longer works, the mean-field theory still
accounts, at least at a qualitative level, for the topological
characteristics of the mean occupancy distribution computed
in off-lattice DLA simulations.

C. Fractal analysis

If off-lattice DLA clusters grown in sector geometries are
homogeneous fractal aggregates as seems to be the case in
circular geometry@74,75,108–110#, the exponent of the sin-
gularity located at the apex of the wedge is identical to the
singularity exponent at any other cluster point. In other
words, the way the mass contained in a ball scales as a func-
tion of the size of the ball does not depend upon the point
where the ball is centered, provided this point belongs to the
cluster:M „B(xW ,e)…}eDF, whereDF is the fractal dimension
of the DLA cluster. A way of computingDF therefore con-
sists in integrating the mean occupancy distribution over all
of the sector up to some radiusR:

M ~R!5E
0

RE
2u0/2

u0/2

r~r ,u!r dr du}RDF. ~31!

FIG. 23. Mean-field calculation of ther field
distribution in a wedge of angleu05120°. Same
representations and same model parameters as in
Fig. 22.

FIG. 24. Rescaled azimuthal density profiles:r(r5R,u)/r(r
5R, u50! for various radii.~a! u0530°: R530 ~—!, 50 ~---!, and
70 ~ !. ~b! u0560°: R520 ~—!, 60 ~---!, and 80~ !.
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In Fig. 25 are reported the estimates ofDF from large-mass
off-lattice DLA simulations in sectors of angle ranging from
15° to 120°. As seen in Fig. 25~a!, when plottingM (R)
defined in Eq.~31! versusR in a log-log representation, one
observes a very nice scaling behavior in an intermediate
range of values ofR, which corresponds to the frozen region
left behind the active outer front zone. From a linear regres-
sion fit of these numerical data, one extracts the values of the
fractal dimensionDF , which does not seem to depend upon
the value of the wedge angleu0. Indeed, the data in Fig.
25~b! are quite compatible with the estimateDF51.6660.01
previously obtained in strip geometry~Fig. 13!, i.e., for
u050. Let us point out that on-lattice DLA simulations yield
a similar u0-independent estimate ofDF , which, up to the
numerical uncertainty, cannot be distinguished from the off-
lattice value5

3. We recall that this numerical estimate is in
perfect agreement with the theoretical prediction
DF5(d211)/(d11) for diffusion-limited aggregation ind
dimensions@103–105#.

Figure 25 also shows for comparison the estimates of the
fractal dimensionDF from the mean-field calculations de-
scribed in Sec. III B. AgainDF does not show any significant
dependence upon the wedge angleu0. Forg52, we therefore
recover a value ofDF that as in linear geometry
(DF51.5860.01), slightly underestimates the value ex-
tracted from ensemble-averaged DLA patterns. For other val-
ues of the cutoff parameterg, one gets estimates that are all
in good agreement with the results obtained in channel ge-
ometry ~Fig. 14!. As discussed in Sec. II C, the mean-field
theory formulated in Eq.~27! is likely to predict a fractal
dimension that matches the DLA valueDF5 5

3 for only two
values ofg, namely,g;1.6 and 4.2. The estimates ofDF for

g51.6, in wedges of various anglesu0, are shown in Fig. 25;
they actually lie in the error bars of both on-lattice and off-
lattice data.

But very much like what we have already noticed in linear
geometry~see Fig. 15!, the fact that forg51.6 and 4.2 the
mean-field theory accounts for the radial dependence of the
mass does not mean that it quantitatively reproduces the ra-
dial evolution of the shape of the mean occupancy profile.
We have checked that this is indeed not the case. For wedges
of arbitrary angleu0, the comparison of the shapes of the
mean-field azimuthalr profile at different radial positions
with the corresponding mean azimuthal DLA occupancy his-
tograms reveals some quantitative discrepancies, although
they both exhibit a transition from a unimodal to a bimodal
profile. Actually, for DLA clusters of a given massM grown
in a wedge of angleu0, there is no time at which one can
stop the mean-field calculation so that after some radial res-
caling in order to adjust the position of the active front zone,
the r contour lines match exactly the level curves of the
mean DLA occupancy distribution. This is the confirmation
that, as formulated in Eq.~27!, the mean-field approach pro-
vides a good approximation of the ensemble-averaged DLA
structures in sector geometry, but fails to pass any quantita-
tive comparison test. In that sense, this generalization of Wit-
ten and Sander’s original mean-field approach still deserves
some additional refinements.

IV. DISCUSSION

To summarize briefly, we have carried out a statistical
analysis of off-lattice DLA clusters grown in either linear or
sector geometry. We have compared the mean occupancy
distributions to the predictions of a recently adapted version
@60,61# of the mean-field approach originally proposed by
Witten and Sander@50#. In channels, the walls impose trans-
lational invariance to the mean occupancy, which is found to
converge to a smooth asymptotic profile when increasing the
widthW of the strip. The shape of this profile is likely to be
selected by surface tension, the size of the aggregating par-
ticles playing the role of the capillary length in viscous fin-
gering. Actually, we have shown that the region of large
occupancy, as defined by some contour plot@Eq. ~6!#, has
exactly the shape of a Saffman-Taylor finger with a relative
with l(W) that converges to12 when increasingW, as ex-
pected from the theory of stable fingers@34–40#. This indi-
cates that the off-lattice algorithm has removed the crossover
phenomenon from isotropic to dendritic fractal DLA patterns
observed in on-lattice simulations@58,59# with a mean rela-
tive width l(W) that converges ultimately to zero in the
limit W→1`. In sector geometry, the comparison of the
DLA mean occupancy profile to ST fingers is no longer rel-
evant since, as shown in Refs.@46–49#, the presence of finite
surface tension prevents the stable finger from reaching an
asymptotic self-similar shape of finite relative angular width.
At a critical size that depends upon the cell angleu0, this
finger becomes unstable due to the so-called tip-splitting in-
stability. What our off-lattice DLA simulations in sector ge-
ometry show is that, except in the early stage of growth in
small-angle cells where some connection to stable ST fingers
can still be achieved, the mean occupancy distribution is not
self-similar in the sense that it cannot be radially rescaled

FIG. 25. Estimate of the fractal dimensionDF from the radial
dependence of the mass according to Eq.~31!. ~a! logM vs logR:
~—! off-lattice simulations;~---! mean-field calculations.~b! DF vs
u0. The symbols have the following meaning:d, off-lattice DLA
simulations;s, on-lattice DLA simulations;j, mean-field calcula-
tions withg52; h, mean-field calculations withg51.6.
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onto a unique asymptotic profile. Actually, the shape of the
ensemble-averaged DLA pattern constantly evolves from a
unimodal profile close to the apex towards a bimodal profile
beyond some critical radius. This topological change of the
DLA mean occupancy profile is strikingly reminiscent of the
morphological tip-splitting instability of ST fingers. This is
again a strong indication that surface tension is present in
DLA growth and that the microscopic scale introduced by
the size of the aggregating particles actually governs the se-
lection of a particular mean-occupancy profile. Let us em-
phasize that this topological transition in the mean-
occupancy distribution was not observed in previous studies
of on-lattice DLA clusters @57#. Very much like the
anisotropy-induced stabilization of anomalous ST fingers
@115#, the lattice anisotropy stabilizes the unimodal finger-
shaped mean occupancy profile, which no longer bifurcates
into a bimodal profile but progressively crosses over to a
petal finger shape with a relative radial width that asymptoti-
cally converges to zero.

When solving numerically the mean-field equations
@60,61#, for almost any arbitrary values of the cutoff param-
eterg, one gets solutions that qualitatively mimic most of the
characteristic features displayed by the ensemble-averaged
DLA patterns in linear as well as in sector geometries. As
shown by Levine and Tu@61#, one can even model the re-
sults of the on-lattice DLA simulations by including some
anisotropy in the mean-field equations. However, there is a
gap between qualitative and quantitative modeling. In par-
ticular, when computing the fractal dimensionDF of DLA
clusters from the scaling properties of the integrated~over
spatial coordinates! aggregater field, we have found that
most of the values of the cutoff parameterg do not yield the
dimensionDF5 5

3 extracted from both off-lattice and on-
lattice simulations. Actually, only two values ofg, namely,
g;1.6 and 4.2, seem to give satisfactory estimates. Unfortu-
nately, for each of these two values, the mean-fieldr profiles
computed in both linear and sector geometries cannot be
quantitatively rescaled onto the corresponding numerical
DLA mean-occupancy profiles. This discrepancy indicates
that the revised mean-field approach prompted by Brener,
Levine, and Tu@60# in linear geometry and Levine and Tu
@61# in sector geometry is still a premature theory that cer-
tainly deserves further improvement.

A rather naive idea would consist in introducing some
higher order terms in ther field variable in both Eqs.~9b!
and ~27b!. As shown in Fig. 26~a!, when choosingg51.6
and adding a quadratic termcr2 in Eq. ~9b!, one can find a
value of c such that the transverser profile coincides with
the mean transverse occupancy profile of DLA growth in a
channel of widthW564. Unfortunately this same value ofc
does not work for wider channels as seen in Fig. 26~b! for
W5128. Nevertheless, one can still hope to remedy this dis-
crepancy by considering additional higher order terms in or-
der to have more free parameters at our disposal. However,
one can show that this strategy is hopeless. Let us rewrite Eq.
~9b! under a more general form:

]r/]t5u@~ f ~r!1a2¹2r!#, ~32!

where f is an unknown function ofr. Some insight to the
specific shape of this function can be gained from our off-

lattice DLA simulations by noticing that the mean transverse
occupancy profile satisfies the steady-state equation:

f ~rT!52a2]2rT /]y
2. ~33!

The validity of Eq. ~33! relies on the fact that the overall
mean-occupancy profile displays translational invariance in
the frozen region behind the active front zone. From the
fractal analysis carried out in Sec. II C, we know that this
transverse profile scales as

rT~y!5WDF22R~y/W!, ~34!

when considering channels of different widths. HereR(x) is
a universal,W independent, profile. From Eqs.~33! and~34!,
we have represented in Fig. 27,2W42DF]2rT /]y

2 as a
function of W22DFrT . The data obtained from the DLA
mean transverse profiles computed at different channel
widthsW548, 80, 96, and 112, all fall on a similar curve~let
us note that the oscillations observed for large values ofrT
are the consequence of statistical fluctuations in the estimate
of rT in the central part of the channel whererT is maxi-
mum!. This observation brings the clue thatf (r) is likely to
be a smooth nonlinear function ofr that definitely depends
upon the widthW of the channel. This is experimental evi-
dence that explainsa posterioriwhy the revised mean-field

FIG. 26. Same as in Fig. 15 except that some quadratic termcr2

has been added to therg term in the right-hand side of mean-field
equation~9b!.

FIG. 27.2W7/3]2rT/]y
2 vsW1/3rT whererT is the mean trans-

verse occupancy profile extracted from off-lattice DLA simulations
in linear strips of widthW548 ~j!, 80 ~h!, 96 ~d!, and 112~s!.
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theory fails to account for the width dependence of the
ensemble-averaged DLA patterns. Moreover, the results in
Fig. 27 show thatf (r) becomes negative for valuesr,rc ,
whererc is some finite value, contrarly to all the modelings
proposed so far, e.g.,f (r)5rg or rQ(r2c) @60# ~whereQ
is the Heaviside function!. The DLA data therefore do not
accommodate of a mean-field model with a single nonlinear
term f (r)5rg.

To understand the inadequacy of the mean-field theory
proposed by Brener, Levine, and Tu@60# and Levine and Tu
@61#, one has to come back to the original work of Witten
and Sander@50#. It is clear that one of the main ingredients
of this approach and probably one of its main weaknesses is
the fact that the aggregate is considered to be transparent to
the diffusing particles@100#. This is undoubtedly a very
questionable working hypothesis. It is probable that a more
realistic mean-field theory would consist in making the ag-

gregate opaque to the diffusion field. Actually, the fact that
f (r),0 if r,rc ~Fig. 27! can be interpreted as introducing
an additional cutoff to the growth rate termrg, which is
probably due to the nonpenetrability of the aggregate to the
random walkers. There has been some recent attempts to
elaborate in this direction in Ref.@117#. As represented in
Fig. 27, the results of our statistical analysis of off-lattice
DLA clusters are likely to provide a decisive test for future
mean-field approaches of diffusion-limited aggregation.
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