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The statistical properties of off-lattice diffusion-limited aggrega@sA) grown in a strip between two
reflecting walls are investigated. A large number of independent runs are performed and the cell occupancy
distribution is measured and compared with the predictions of a recently proposed mean-fieldNtteDryit
is shown that the mean occupancy profile moves at constant speed and has a shape and a selection mechanism
similar to that of stable Saffman-Taylor fingers. In particular, there exists a specific contour line of the mean
occupancy distributiofp=0.6p,,,) that has the width and the shape of the Saffman-Taylor fihged.5.

Motivated by the connection to the Saffman-Taylor problem, we extend our study to DLA growth in sector-
shaped cells. Again a remarkable agreement is found between the mean occupancy profile and the shape of the
selected stable finger in the small surface tension limit. Moreover, whenever the smooth finger is theoretically
expected to undergo a tip-splitting instability, one observes, as predicted by the MFT, a qualitative change in
the cell occupancy distribution that exhibits “profile crossing” together with a pronounced flattening of the tip
region. We comment on this phenomenon, which was not observed in a previous similar statistical analysis of
on-lattice DLA clusters due to the stabilizing effect of lattice anisotropy. The implications of our numerical
results to the relevance of the DLA mean-field theory are discu$Sa063-651X96)06905-9

PACS numbe(s): 68.70+w, 61.43.Hx, 47.15.Hg, 47.20.Hw

. INTRODUCTION | .= 7b(T/uV)Y2 The capillary length. can be seen as the
characteristic small length scale of viscous fingering.

In recent years, diffusion-controlled growth phenomena In the configuration originally chosen by Saffman and
have attracted a lot of interefl—15. Notable examples Taylor[19], the fluids move in a very long linear channel of
[16—1§ of interfacial pattern formation in diffusive systems Width W. In this geometry, the boundaries somewhat sim-
range from viscous fingering to electrochemical depositiorPlify the problem by imposing translational invariance. The
and to the growth of bacteria colonies. Among this wideControl parameter is usually defir;ed as thze following dimen-
variety of systems, the Saffman-Tayl@T) fingering[19]in  Sionless numbef3,21]: B=(1/127°)(I./W)*, which is pro-
two-dimensional Hele-Shaw cells is without any doubt thePOrtional to the square of the ratio of the smalldg) ¢o the
one that has received the most attentj@r-6,20. Experi- largest (V) characteristic length scales of the system. When-

: : ; these two length scales are close to each other
mental and theoretical efforts have been mainly focused "_aver oo X ;
two directions. On the one hand, the shape and selectio o/W>1/8, B>1/768), the injected less viscous fluid

mechanisms of nonlinear stable smooth curved fronts wertakes the shape of a single finger that moves through the cell
WETSt constant velocity21]. In their pioneering work, Saffman

. Sind Taylor[19] showed that the shape of the finger can be
geometries[3-6,19-21 On the other hand, the very un- giyaineq from effective two-dimensiondPD) equations
stable branched patterns observed when either decreasififen, the surface tension between the two fluids is neglected
surface tension or increasing the width of the cell have beeE'T=0). In this approximation, the shape is not entirely de-
mainly considered from the point of view of their fractal ormined but rather a one-parameter family of shapes exists,

structure[21-29. _ . the free parameter being the ratid0<\<1) of the width of
The instability giving rise to ST viscous fingerifi9,30 0 finger to the width of the channel:
occurs at the interface between two fluids moving between

narrowly spaced solid plates. The interface is unstable when W(1—)\)
the less viscous fluid forces the most viscous fluid to recede. X(y)= TP In
The flow of the fluid is dominated by the viscous dissipation .

on the plates and the mean velocity in the cell plane is proEOX corresponds to the direction of propagation of the fin-

portional to the pressure gradievit- — (b?/12u)Vp, where  gep. The experiment21,31 show, however, that the finger

b is the cell thickness and the viscosity of the most viscous tends to occupy half of the channel at small values of the
fluid. Because of the incompressibility of the fluids, the presjparameteB (e.g., at large velocitiés The selection of the
sure field obeys a Laplace lawp=0. Surface tension has a gphserved asymptotic finger width=0.5 was understood
stabilizing influencd3]; this is taken into account by adding rather recently after numerical investigatiof82,33 and

a boundary condition for the pressure jump at the interfaceynaytical works{34—36. Acting as a singular perturbation,
[p]=Tx, whereT is the surface tension and the local  syrface tension selects, out of the continuum Saffman-Taylor
curvature of the meniscus in the plane of the cell. The lineagamily [Eq. (1)], a discrete family of finger shapes [(B)]
stability f{nalysis{30] of a plane interface moving at constant that all merge wherm (i.e., B) tends to zero. Among this
velocity V gives the wavelength of maximum instability: family, only the branch defined by the narrowest of these

1 1 2wy !
> +cos—)\W (1)
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shapes X,-,) corresponds to linearly stable fingers. Actu- finger profile of finite angular width(6) in the limit B goes
ally, when the parametd becomes too small, the two char- to 0. As in linear geometry, the branch defined by the nar-
acteristic length scalek,;,=I. and|,,=W depart signifi- rowest fingers corresponds to the observed stable solutions.
cantly from each other and one observes experimentally th& surprising result was, however, obtained for divergent sec-
destabilization of the smooth finger into an arborescent strudors. A discrete family of branch solutions always exists for
ture with a fractal-like appearan€®21,27,29. As pointed out any sector anglef, at rather largeB values. But these
in Refs.[5,6,19, this phenomenon can be understood as dranches §,(6,,B)] no longer approach a unique limiting
noise-induced jump from the stable to the unstable brancheshape a8 tends to zero since different branches merge by
of finger shapes that is possible only for small value8pf pairs and successively disappear before the limit of zero sur-
when different branches are getting very close to each otheface tension is reached. As emphasized in Ré46], the
Since in Laplacian pattern forming systems, the motion ofmerging of the first two lower brancheshe lowest one
the interface depends upon the boundary conditions fixed by,-q(6y.B) corresponding to the stable finggis likely to
the cell shape, the choice of the geometry is cruddl. As  correspond to a tip-splitting instability for the smooth finger
a very clever generalization of the Hele-Shaw geomietiy, [20,21]. Therefore, on the contrary to the situation encoun-
Thomeet al. [42] have proposed to study viscous fingering tered in linear or convergent sector-shaped cells, the destabi-
in a wedge of arbitrary anglé,; this sector geometry pro- lization of the finger into an arborescent fractal structure in
vides a natural bridge between the lindd®,41] and the divergent cells turns out to be intrinsic and noise indepen-
open circulaf43,44] geometries. It was observed that, as indent. Moreover, since most of the experiments are performed
Hele-Shaw cells, for large enough velocity, a unique fingert constant applied pressu®2], there is no way to escape
tends to occupy a well-defined angle fraction of the sectofrom this instability; actually the finger velocity slows down
cell. The difficulty of experiments in a wedge comes fromlike 1/r, which implies thatB(~1/r) decreases irreversibly
the unsteadiness of the growf#h2]. If the front velocity is  during the growth process. Thus, in these experiments, one
kept constant, thereby fixing the capillary lengith then the  follows dynamically the branch of stable solutions, ulti-
dimensionless paramet& varies during the growth since mately reaching the critical poinB[.( 6,)] where this branch
the local widthW(r)=r 6, of the cell is a function of the disappears. The theoretical band-merging scer{@to-49
distancer of the front to the apexB~1/r2). B increases in therefore provides a comprehensive understanding of the ex-
convergent cells(6,<0) and decreases in divergent onesperimental observation that in a divergent sector, whatever
(6,>0). Only if B is maintained artificially constant by ad- the angled,, a single smooth finger is always observed as a
justing the velocity so that it varies &~ 1/r? will the finger  transient towards a more complicated morphological evolu-
have a self-similar growing shape. For a given valuBpits  tion. As the result of a competition between tip-splitting in-
angular width scales on the cell anglg For all convergent stabilities and screening effects, the system evolves asymp-
cells, the relative angular finger width( 6,,B) is observed totically towards some apparently disordered arborescent
to converge towards an asymptotic val(@,)<3 in the limit ~ pattern that is likely to display scale-invariance properties
B tends to zero. Moreover, this fractiaui6,) is an increasing [21,42.
function that approaches as 6, approache#),=0, i.e., the Among the various models of stochastic growth proposed
value corresponding to linear cells. For divergent cells, simifor fractal aggregategl2], the diffusion-limited aggregation
lar single smooth fingers of relative width(6,)>3 are  (DLA) model introduced by Witten and Sand&0] is well
formed whenevelB takes on values above some critical known to produce self-similar ramified patterns that strongly
thresholdB.( 6,) that turns out to be an increasing function resemble the unstable viscous finger morphologies observed
of 6,[42]. Whatever the valud, of the cell angle, below this in the unsteady regim@1-29. In this model, random walk-
critical parameter valuB<B,(6,), smooth self-similar fin- ers are sent, one at a time, from far away and the structure
gers are unstable. Very much like what has been observed grows via irreversible sticking when the walker reaches a
linear cells, when the rati@V/| . is large, the range of scales neighboring site of the preexisting aggregate. As was first
available to fractal branching is large enough for treelikenoted by Patersof22], the equations of growth of DLA are
structures to develof21,42. similar to those of ST fingering in the limit of zero surface
From a theoretical point of view, a lot of effort has beentension. In the numerical model of random walking particles,
devoted recently to generalizing the shape, selection, anihe role of pressure is played by the probabiftyto visit of
stability analysis of steady-state fingers in linear cells toa site;P similarly obeys a Laplace la’sP=0 and the nor-
smooth fingers growing in sector-shaped c¢R§,45-49. mal velocity of growth of a region of the interface 4,
This amounts to a switch from a growth problem in a geom-«<(VP),. The difference between the two descriptions
etry that is translational invariant to a geometry that is in-comes, of course, from their deterministic or stochastic na-
variant under rescaling. In the limit of zero surface tensionfure but also from the existence of surface tension in viscous
for each value of the sector anglg, a one-parameter family fingering, which has no obvious counterpart in DLA. Let us
of self-similar finger solutions parametrized by their relativenote, however, that the computation of DLA clustering is
angular widtha(6,) was analytically found46] as the coun- usually performed on a lattice and that the lattice mesh size
terpart of the Saffman-Taylor solution family in a linear I, introduces a smallest length scdlg, in the simulation
channel. The role of surface tension in finger selection hag21,29. But that does not mean, priori, that the probability
been investigated numerically and analytically with very in- P satisfies the boundary conditioP]= T« at the interface.
teresting resultf46—49. For convergent sectors of arbitrary ~ Several experiments and numerical simulations were de-
angle 6,<0, a discrete family of solution branches voted to the comparison of the fractal branched patterns ob-
[A,(6,5,B)] is selected; they all converge to a self-similar tained in viscous fingering and DLA clustef8,12,21—
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28,51-56. More remarkable is the connection recently MFT predictions in linear channels. This study is extended to
found in Ref.[57], between the ramified DLA structures and sector-shaped cells in Sec. Ill. Our conclusions are summa-
the smooth stable viscous fingers. The computation of th&ized in Sec. IV.

ensemble-averaged DLA pattern, which of course is a rather

smooth apd ord_erly structure, has revealed a mean pr_ofile Il. LINEAR GEOMETRY
that coincides with théfingen shape of the smooth analyti- _ _ _
cal solution. Furthermore, the selection of a particular finger A. Off-lattice DLA simulations

width, generally ascribed for stable fingers to the effect of To generate isotropic DLA clusters in a strip with reflect-
surface tension, apparently survives the instability and stiling walls, we have adapted a very efficient off-lattice algo-
governs, at least in a statistical sense, the growth in the fragithm originally designed by Tolman and Meakir2], and

tal regime. For example, in a linear channel, the averagereviously used for simulating DLA growth in circular ge-
DLA structure defined by the points of the cell whose occu-ometry[73—75. This algorithm combines the simplicity of
pancy probability is above average, is almost exactlyxtee  the off-lattice algorithm proposed in R€f76] with the ra-

3 Saffman-Taylor finger. This statistical analysis has beerpidity of the on-lattice hierarchical algorithfi62] (we use
extended to sector geometr[ﬁ], to the case of anisotropic the foIIowing conventions: we choose& @Iong the cell axis
growths[58,59, and to the unstable side branchings of frac-and Oy across the cell Initially, a circular particle of diam-
tal dendriteg58]. These studies all confirm the unexpected€tera is launched at a random position on a line parallel to
feature that Laplacian growth processes seem to retain, in tH8€ linear substrate and located at a distaggg+! from i,

unstable fractal branching regime, some memory of the&max being the abscissa of the particle of the cluster the fur-
Fgest from the basis arlds a few times the particle diameter

(practicallyl = 3a). Then, at every step, the distandg, of

the walking particle to the closest point of the cluster is de-

Yermined: if dnin<a, the diffusing particle stops and be-

comes part of the cluster by sticking to the closest cluster
article previously determined. Otherwise it jumps to a ran-

In order to explain the above correspondance, a mea
field theory (MFT) has been proposed recently for two-
dimensional DLA, both in lineaf60] and sectof61] geom-

etries. _This theor_etical appr_oach is dirgctly inspired by theyo, position on a circle of radit®=d,,;,—(1— 8)a, where
.mean-.flek_j equgtlons established by Witten and _Safﬁﬁjr 0=<¢4=<1 is an overlapping parameter. According to standard
in their pioneering work that couple a walker field to an yractice, the diffusing particle is lost if its distance to the
aggregate field. The main modification is the introduction ofjinear substrate exceeds some critical ValJe 4X . AS
an additional parameter that is supposed to account for thgyr as the efficiency of the algorithm is concerned, the calcu-
intrinsic discreteness of the sticking process in the DLAJation at each step of the distandg,, of the diffusive par-
model. The comparison between the MFT predictions andicle to the aggregate can be very time consuming. To make
the occupancy probability distributions computed in DLA practical the computation of large-mass DLA clusters, we
simulations yields satisfactory results as long as the enhave followed the strategy advocated by Tolman and Meakin
semble average is performed on small-siae small-mass  [72] to improve and extend in higher dimensionalities previ-
DLA clusters. This remarkable agreement provides some ureus off-lattice algorithmg77,78. Directly inspired by the
derstanding of the relationship discovered experimentally behierarchical on-lattice algorithms developed by Ball and
tween ramified DLA structures and smooth selected fingeBrady [62], this approach consists in constructing a collec-
patterns[57]. Some severe discrepancies seem nevertheledn of coarse-grained versions of the cluster at different
to arise when one proceeds to large-mass DLA simulationgScales. First, the cluster as seen at the coarsest scale is ex-
e.g., in very wide linear cells or in divergent sector cells@mined and if a jump on that scale can be taken by the
when one does not stop the simulation early enough befordiffusing particle, the jump is executed. Otherwise, one
entering some crossover regime towards dendritic growt/$Witches to the next lower scale version of the cluster in
[58,59. Large-mass DLA clusters grown on a square lattice?"der to get more accurate information about the location of
are known to display preferential directions of groWé2— the cIu_ster in the vicinity of the particle. Tr_ns process of
71]. One can easily imagine that the anisotropy inherent té:onsultmg more and' more resolved approximations of th?
. : - .. Cluster continues until one reaches the lowest scale. At this
on-lattice  DLA simulations may completely alter its

bl d behavi i . le. | RI vel, from the knowledge of the exact location of the cluster
ensemble-averaged behavior at macroscopic scale. in :garticles, one knows whether the diffusing particle has al-

[61], Levine and Tu have demonstrated that adding phenom, 4y contacted the cluster or if it can be moved by a small

enologically anisotropy in the MFT modifies the overall yigiance of the order of one particle radius. After a particle
shape of the aggregate field in such a way that it correctly5g peen added to the cluster, the collection of hierarchical
describes the average DLA structures. Here, our aim is t@uarse-grained versions of the DLA cluster must be updated.
take the opposite task and to get rid of the underlying lattice |n order to generate DLA clusters of slightly overlapping
anisotropy by performing DLA simulations with an off- particles, we fix once for all the values of the overlapping
lattice algorithm[72—-75. Then we will be in position to paramete®=0.2. We refer the reader to R¢.3], where the
proceed to a direct comparative test of the relevance of theffect of this model parameter on the DLA morphological
MFT, keeping in mind, as a reference shape, the correspon@haracteristics has been investigated systematically. As in
ing ST finger solution when it is stable. our previous study of on-lattice DLA clusters in Rg57],

The paper is organized as follows. Section Il is devoted tave use a numerical trick to initiate the growth from the cell
the comparison of averaged off-lattice DLA patterns andaxis: the very first random walking particles are likely to
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(a)
ot
AN FIG. 1. (a) An off-lattice DLA cluster of mass
M=2700 grown in a channel of widthV=64.
(b) Region of the strip with mean occupancy
——= above the “mean” rat@,,=0.142[Eq. (5)]; 255
(b“: aggregates of the type shown (@ were grown
7 to obtain this repartition. The continuous line is
J the shape of the Saffman-Taylor analytical solu-
3 tion of width \=0.60[Eq. (1)].
{ ]
300

stick onto a needle centered on the cell axis and the length afarious forms in Fig. 2. The three-dimensional representation
which is scaled on the width of the stripractically of p(x,y) in Fig. 2(a), as well as the contour plots in Fig.
L,=5Wr/32). This algorithmic artifice reduces considerably 2(b) and the mean occupangy(x,y=0) along the axis of
the period of the selection reginié4,79—83 among DLA the channel in Fig. @) clearly show three distinct regimes.
trees grown from the linear substrate, which is out of theFirst there is some initial transient regime<@<50) where
scope of the present analysis. In Figa)lis shown a cluster one.progressively loses the influence of the initia_l conditions
of massM = 2700, grown with our off-lattice algorithm in a (mainly the presence of the needi® the benefit of the
strip of width W= 64a (for the sake of simplicity we will set 9rowth, which settles in the center of the channel from the
a=1 in the rest of this paper and we will exprassas well _begmnmg. '_I'hen, ther_e is a region where the cell trgnslatlonal
as other length variables in particle size unifEhe mass is nvariance imposes itself on the occupancy profile {30
chosen large enough that the characteristic size of the aggrf)—rfsgr) 'olgetrr;tse;eg;%ntLheegsrc(:):/\e/tehnIhne?st::eet;\sa%n Elhr?e%elllr;?fhgftrqg
g?{;ﬁ\fﬂﬂggizé btg r;:tgz Ig;%\?r:_ﬂ;r?ivr;%;iie' tSrEZagr)i/tgr?g;a{Nemean occupancy at the front zone corresponds to the active

. ) part of each pattern and to the dispersion of the tip position
use is to adapt the masé to the value of the cell widtW 555y "ag'seen in Fig. (®), the overall contour plots have

so that the average length of the aggregéfe>3W, actu- 5 finger shape that strongly resembles the set of analytical
ally this provides us with an intermediate region of Siz€gso|utions[Eq. (1)] derived by Saffman and Tayl§t9]. Let
larger tharWW where the steady fractal regime can be studied;s note, however, that the global shapeo¢x,y) does not
statistically[57-59. match the occupancy distribution of a stable viscous finger.

Our statistical analysis of off-lattice DLA clusters COﬂSiStSThiS is obvious in F|g m) where some transverse section of
in measuring the mean occupanefx,y) of each site of the  the mean occupancy is shown to deviate significantly from a
strip [57]. In a given strip of widthW, we therefore grovN step profile[p=1 at the center of the celhir) and p=0 on
aggregates with the same total numidérof particles. For the edggoil)]. Indeed, the histogram presented in this figure
each aggregate, we associate each of its particles to the sitean averaged transverse profile obtained by taking advan-
of the grid closest to it. We then count for each point of thetage of the translational invariance and summing over our
grid how many times it has been occupied by a particle of arstatistical sample of 128 transverse sections in the asymp-
aggregate. The mean occupampdy,y) is obtained by divid-  totic steady fractal regimg29,73:

ing this number by the total numb#t of realizations. When 208
averaging 255 DLA clusters of the type shown in Figa)1 _
one gets the mean occupancy distribution represented under Pwy) X:ZBO p(X.Y)/128.

FIG. 2. Statistical analysis of off-lattice DLA
clusters of mast =2700 grown in a channel of
width W=64. Our statistical sample involves
N=255 aggregates similar to the one shown in
Fig. 1(a). (a) Three-dimensional representation of
the mean occupancy(x,y). (b) Contour plots
for p: the levels are 0.05, 0.10, 0.15, 0.20, and
0.25 from outer to inner(c) Histogram of the
mean occupancy along the axis of the strifx,y

0.6 — 0.3 f—' 3 .
(C) 3 E (d)E =0). (d) Histogram of the mean transverse occu-
p°'4 C ER 0.2 < pancy averaged over 128 sections across the
02| 3 oiE 3 channelip(y)=%2%0p(x,y)/128. The solid line
0 C | [ h E 3 corresponds to the conjectured transverse profile
i 1 1 1 1 1 1 1 0 - ]
0 200 400 -20 0

2o () =pmaxcOS(myIW) [Eq. ()
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(a)

FIG. 3. Statistical analysis oN=255 off-
lattice DLA clusters of mas$1 =24 000 grown
—— in a strip of widthW=256. (a) A realization of
(b)_: the off-lattice DLA process(b) The points of the

1 cell where the mean occupancy is above the
- “mean” rate p,,=0.095 are represented in grey.
1 The continuous line is the shape of the ST ana-
4 Iytical solution of width A=0.57 [Eq. (1)]. (¢
Histogram of mean longitudinal occupanpyx,
y=0). (d) Averaged histogram of mean trans-
verse occupancy over 512 sections across the

100 B

V] 0

—-100 (=

02— T T 73 strip in the steady fractal regimé(y). The
] 015F (d)—f conjectured transverse profile pt(y)
q por1fE 3 =PpmaxCO(y/W) [Eq. (2)] is shown in solid
] F 3 line for comparison.
] 005F
0 E 1 1 1 1 I 1 1 1 1
0 500 . 1000 1500 -100 0 y 100

This transverse occupancy profile has a maxinpy, at the  tive width A of this mean finger is significantly larger than
center f=0) and decreases smoothly to zero at the wallshe valuex=3 obtained for on-lattice DLA clusters in sur-
(y=*=WI/2). It turns out also to be different from the asymp- prising agreement with the relative width of the stable ST
totic profile: finger selected by surface tensip82—40. We will spend
the rest of this section discussing this apparent discrepancy.
PT(Y) = Pma0S(my/W), 2) We have repeated our statistical analysis of off-lattice
DLA clusters for channels of various widths ranging from

study of on-lattice DLA cluster§see also Fig. &)]. How- W=16 to 256. As: illustrated in Fig. 3.for.the widest cgll
ever, if according to the recipe proposed in RE29, 58, and (W=256), the main fe_atures obse.rved in F|g.f3. 1 and 2 with-
59], one estimates the “mean” width of the mean occupancySta”d such a change in the cell size. In particular, the mean

by determining the points on each side of the cell axis thatansemble-qveraged DLA profile defined from E(®. and _
satisfy (4) has again the shape of one member of the ST analytical

solution family[Eq. (1)]; the solid line in Fig. &) represents

conjectured by Arneodet al. [57] in a similar statistical

I G the profile of the ST finger of relative width=0.57. From
Ym :p— 20: p(y), ) the computation of 512 histograms of mean transverse occu-
max pancy corresponding to as many sections across the strip in
one gets for the relative width the steady fractal regime (250k<850), one gets the aver-
age transverse histogram shown in Figd)3 Its width
A=(y =y IW (4) A=0.57x0.02 is slightly smaller than the width of the aver-

age finger observed fa&W= 64 in Fig. Xb). The estimates of
a value A=0.60+0.03, which is definitely larger than the A obtained for different values & are reported in Fig. 4, as
value 0.50 expected from the conjectured transverse profil@ function of 1. Despite some slow decrease Jofwhen
in Eq. (2) (the estimate of the error bar relies upon our staincreasingW, it seems that for cells of widthv>100, one
tistical sample of 128 transverse occupancy histograbes ~ does not observe any further quantitative change in the esti-
us emphasize that this definition of the relative mean widtimate of\. Actually, \ is likely to converge towards an as-
of the mean occupancy amounts to Compaﬁg) to a step ymptotic limit value A=0.57+£0.02, which is significantly
profile of the same height,,, and the same integral. Now if (Wwith respect to the statistical uncertaintiarger than the
one selects only the points of the strip of mean occupanc@Symptotic prediction =3 for the relative width of stable ST

larger than the mean rate, fingers in the limitB—0.
In Fig. 4 are also reported the values of the relative width
pm=p(Ym), (5) \ of the large occupancy region obtained for DLA clusters

generated using the on-lattice algorithm described in Ref.
namely, p=14.2% (=p./2), one defines a region of large [84], the lattice being parallel to the cell axis. Rdkranging
occupancy that is remarkably well fitted by the Saffman-from 16 to 256\ is found significantly smaller for on-lattice
Taylor analytical solution of relative width=0.60[Eq.(1)],  than for off-lattice DLA clusters. Actually, as previously
as shown in Fig. (b). Thus, one recovers the same ratherpointed out by Arneodet al. [57], the on-lattice data fall
striking result as originally discovered for on-lattice DLA remarkably close to the asymptotic predicting3 for the
clusters in Ref[57] [see also Fig. )], except that the rela- selected ST finger in the limit of zero surface tension. In
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and more pronounced when one considers wider and wider

O S L B e LA s
i | ] strips. Individual realizations evolve progressively towards
I 3 g dendritic fractal patterns while the region of mean occupancy
)\06 C ; }H E } ‘ $ § becomes narrower and narrow&B] as one can guess from
C ] Fig. 4 where the relative width of the mean finger obtained
S P U o L B S— for W=512 (N=50), A=0.37+0.06, is definitely smaller
i f ity ] than the asymptotic limih=3 for isotropic fingers. At this
r ] point, we refer the reader to a previous study of anisotropic
0.4 - 7 Laplacian growths by Arneodaet al. [59], where this
- ] anisotropy-induced morphological transition from DLA to
N N A IV dendritic patterns was quantitatively understood by analogy
o 0.02 0.04 with the anisotropy-induced crossover known for stable

/W

smooth fingers from isotropit\=3) to needlelikeA=0) ST

patternsg[21,85-9§. As originally pointed out in Ref[57],
the histogram of mean transverse occupancy computed for

FIG. 4. The relati idth\ of the | ion de- . . .
© relative Widih o' the large occupancy region de- -, |attice DLA clustergFig. 5(d)] has a shape that is hardly

fined from the criterion(3) and (4) vs 1W: @, off-lattice simula- - .
tions, N=1000; O, r(o)n-latti(ce) simulations, N=1000 (W distinguishable fromp_T(y,):pmaxcog(Wy/W) [Eq. (2)]'_
=16,32,64), 255\W=128), 480 (V=256), and 50\V=512). The | NiS might be pure coincidence. Let us note that this is no
symbolsB correspond to off-lattice simulations when defining the I0nger the case in the crossover regime towards dendritic
large occupancy region from the By, contour lines[Eq. (6)]. ~ growth as discussed in Reb9).
The solid line corresponds to the theoretical predicfigq. (7)] for What seems to happen for off-lattice simulations is there-
the relative width\ ,_o(1/W) of the stable smooth ST finger with a fore rather different from on-lattice simulatiori99]. One
capillary lengthl ;= 4a. does not observe the crossover to dendritic patterns, which is
a strong indication that our off-lattice DLA clusters are iso-
order to carry out a detailed comparison between off-latticdropic fractal aggregates. Moreover, as reported in Fig. 6,
and on-lattice growths, we summarize in Fig. 5 the results ofvhen investigating the evolution of the mean transverse oc-
a statistical analysis dil=1000 on-lattice DLA clusters of cupation histogram for wider and wider strips, the rescaled
massM = 2700, grown in a strip of widtWW=64 in similar  transverse profile/p,,., coOnverges to an asymptotic profile,
conditions as the off-lattice simulations shown in Figs. 1 andvhen plotted versug/W, which is different from the con-
2. As seen on the region of large occupancy in Figp) 5ts  jectural profile given by Eq(2). As seen in Fig. &), this
profile is still very well fitted by the shape of a ST finger, but analytical profile inspired from the ensemble-averaged on-
this finger is narrowerA=0.51+0.02, and therefore longer lattice DLA cluster§57] does not account precisely for the
(Xijp~360 than the off-lattice ST fingefX;,~280 in Fig.  effect of the walls on the actual confinement of the growth in
1(b). This observation is a strong indication that the presenc¢he central part of the strip. This explains the discrepancy
of an underlying lattice favors the growth along the latticeobtained when estimating the relative widths of the large
axis, which is parallel to the cell axis. The anisotropy in- occupancy region for on- and off-lattice DLA clusters. Using
duced by the lattice at a microscopic level in the sticking ruleEgs.(3) and(4) to define this region, this amounts to select-
therefore imposes some preferential direction of growth at @ng the p,,=0.50,,, contour line for on-lattice DLA clusters
macroscopic levgl62—71). This phenomenon becomes more as a consequence of the specific €ay/W) shape of the

(a)

FIG. 5. Statistical analysis ol=1000 on-
lattice DLA clusters of mas# =2700 grown in
a strip of widthW=64. (a) A realization of the
on-lattice DLA process(b) The points of the cell
where the mean occupancy is above the average
rate p,=0.123 (=p,,/2) are presented in gray.
The solid line is the shape of the ST analytical
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(d)

solution of widthA=0.51[Eq. (1)]. (c) Histogram

of mean longitudinal occupancy(x,y=0). (d)
Averaged histogram of mean transverse occu-
pancy over 128 sectionsx €[100,228]) across
the strip in the steady fractal regimpg(y). The
conjectured  profile pr(Y) =pmaxCOL(my/W)
[Eg. (2)] is shown in solid line for comparison.



6206 A. ARNEODO, J. ELEZGARAY, M. TABARD, AND F. TALLET 53

When identifying the capillary length, to a few particle
sizes (.<<4a) in the expression of the dimensionless param-
eterB=(1/127%) (1 /W)?, Eq. (7) provides a remarkable fit
for the numerical data.

In Fig. 7 are also shown the regions of the strip that are
respectively delimited by different contour lines from
0.2pmax 10 0.80ax- It is clear that the contour lines corre-
sponding to small occupandyigs. 1@ and 7b)] signifi-
cantly deviate from the ST finger shapef corresponding
relative width, which displays a rather flat tip for large
that is not reproduced by our ensemble-averaged off-lattice
DLA patterns. The comparison for the highest level curves

FIG. 6. Evolution of the histogram of mean transverse 0(:cu-Of large occupancyFigs. f) and 1g)] is made difficult by

pancy for off-lattice DLA simulations in a linear strip of increasing SOMe lack of statistical convergence to a smooth finger pro-

width. (a) p vs y/W: W=32, 64, 128, and 256 from top to bottom. file- But from a careful examination of the B.glay, 0-50max.
(D) PIpmax VS Y/W. and 0., contour lines in Figs. (€), 7(d), and 7e), re-

spectively, it is rather delicate to decide whether thepQ,6

mean transverse occupancy profiidg. 5(d)]. One then de- level curve play_s a privileged role in the sense that it may be
duces that the region of large occupancy defined by thd1€ Only one with an exact ST shape. We do not think that
points of the strip with an occupancy rate above the averagk'€"® iS hope of answering this question from extensive nu-
Pp=pmad2 has a relative width=0.5. This is no longer true merical simulations. . : ,

for off-lattice DLA clusters whose asymptotic mean trans- _>° far, we have mainly considered the region of the mean

verse profile has a different shape and therefore a relativccupancy profile, which is invariant by translation and
width significantly larger thar} if one uses the same arbi- which corresponds to a region where the growth is no longer

trary criteria as for on-lattice simulations. But, as shown inctive. As shown in Fig. @), the histogram of mean longi-

Fig. 4, if one considers as an alternative definition for thetUdinal occupancy(x,y=0) is quite flat in this region up to

limit of the region of large occupancy the @6, contour some fluctuations due to finite-size effects. When increasing
X . . .

line, one gets estimates of the relative widtthat are quite e :na_lsd\/l dOf thhe DL’ﬁ‘_ t_:ltésteas, tu's mactllvgvéonhe progres-

similar to those obtained for on-lattice DLA clusters, SIV€lY invades the cell; indeed, when scaledWinthe mean

namely,\=0.50 for strips of width ranging fromv= 16 to length of the clustek/W turns out to be prqpomonal to its

256. Moreover, as illustrated in Fig.(¢], the so-defined MassM (xg denotes the position of the active franin the

large occupancy region is again remarkably well fitted by thé‘r,ont ZOne, Fhe falllc.)ff ofp(x,y=0) accognts for the disper?
analytical shape of the stable ST finger. Thus, by considering'©" Of the tip position of each DLA realization. As shown in

the points in the strip with an occupancy rate above som

ig. 8(c), the width of this active zone in/creases during the
. 12 . . .

critical proportion of the maximum occupancy ra@ the ~9rowth with a dependenakg/ W~ (xg/W) ™, which is quite

center of the channglwhich turns out to be surprisingly

consistent with the behavior observed for on-lattice DLA
close to the magic proportion clusters[57]. As originally pointed out in Ref[57], this can
' be understood if one considers the growth process, on the
— scaleW, as the successive additionmfndependent bunches
P(X,Y)= (L) pma)X,y=0), ®  of a fixed number of particles having different configurations

and thus different lengths so that the dispersion of the tip
where ¢=1.618 is the golden mean, one recovers statistipgsition be proportional ta/n.

cally the shape of the stable ST finger selected by surface
tension. Therefore, these results once more confirm the deep
connection between viscous fingering and DLA growth. A first attempt to establish a mean-field theory for DLA
What is really astonishing here is that going from the stableyrowth goes back to the pioneering work of Witten and
finger to unstable fractal patterns, the selection of a solutioisander{50]. In their original paper, these authors raised the
seems to survive its instabilit}s7]. Underlying each DLA issue of a general continuous formulation for the time devel-
realization there is, as a statistical guide, a region of large@pment of some ensemble average of DLA clusters. They
occupancy that has the shape and the relative width of thgroposed the following equations:

corresponding stable ST finger. In that respect, our results

B. Mean-field diffusion-limited aggregation

indicate that the role of the viscous finger capillary length dpl at=V2u, (8a)
scale is played by the particle siaefor DLA clusters. This
is confirmed quantitatively in Fig. 4, where our set of data aplat=u(p+a?V?p), (8b)

for the relative width\ of the ensemble-averaged off-lattice

DLA patterns is compared with the asymptotic theoreticalWhere andu are the mean densities for “agaregates” and

prediction for the branch ,_y(B) of stable fingers selected |, P g . ) ; g9reg

by surface tensiof34—4d; _walkers,_ respe_ctlvely, ana is the lattice spacing. Equa-
tion (8a) is nothing more than the conservation of mass.

3 Equation(8b) accounts for the growing rule of the “aggre-
™ R23 7) gate” field. Unfortunately, as pointed out by Hakim and co-
7 ' workers[42], these equations are not correct in channel ge-

1 3
An-o(B)~5 +2
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0
100 (a)
-100
0
100 (b)
-100
0
100 (©
-100 FIG. 7. Statistical analysis di=1000 off-
lattice DLA clusters of mas$1 =24 000 grown
in a strip of width W=256. In gray are repre-
y 0 sented the points of the cell where the mean oc-
d) cupancy is agove Opznax_(a), 0.3 max (b),
100 ) 0490y (©), 050 (), 0.80ma (€), 0.7pmma (1),
and 0.8 ,ax (9). The solid lines correspond to the
100 ST finger analytical solution of relative width
N=0.73(a), 0.67(b), 0.61(c), 0.56(d), 0.49(e),
0 0.41(f), and 0.31(g).
100 (e)
-100
®
-100
(8)

ometry since there is no steady solution evolving at constargsome modification to Eq8). This modification consists in
velocity. Indeed, the longitudinal profile gfdisplays a > replacingp by p” in Eq. (8h):
power-law behavior, which explains the interface accelera-
tion. aplat=V?2u, (9a)

In order to remedy the insufficiencies of the Witten and
Sander mean-field equations in such a way that they provide aplat=u(p?+a3vV?p). (9b)
some understanding of the ensemble-averaged on-lattice
DLA patterns found by Arneodet al.[57], Brener, Levine, As argued in Ref[60], taking y greater than 1 is a way,
and Tu[60] (see also Ref[100]) have recently proposed among others, to introduce a cutoff in the growth rate at
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0.6 —
(a)]
0.4 -
2 S 4
0.2 ]
% 500 X 1000 1500 FIG. 8. (a) Statistical analysis ol =255 off-
e B e o e S S e E e e lattice DLA clusters grown in a channel of width
0.8 (b) W=256. The histogram of mean longitudinal oc-
- g cupancy is shown at different stages of growth:
0.6 J M =100, for n=1,2,..,24. (b) Longitudinal
C ] profile of the “aggregate”p field as computed
p04 [ 4 with the MFT equations(9)—(12) at different
I ] stages of growtht=5n, for n=1,2,..,22; the
02 - _ model parameters are=1, y=2, a=1, and
r ] W= 20. (c) Width of the active front zond vs
ol 1 X2, wherexg is the location of this front, ex-
0 20 40 X 60 80 100 tracted from the off-lattice DLA simulationgd)
200 T T AL NI B B AL B A vs xg for the MFT calculations.
- NOMNER! (d)
A UL B
100 |- e J AT issssssssssmssssssssssan - ]
"o 3 i
i A 1 w0k .
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Xy Xp

small density that will mimic the fact that in the DLA model, Encouraged by the very promising results obtained by
growth cannot occur with an infinitesimal fluctuation @f  Brener, Levine, and T{i60], we have reproduced in Fig. 9
Therefore, as compared to E®), Eq. (9) is likely to ac- the results of some simulations that demonstrate clearly the
count for the discrete character of the DLA model, where thecapability of the mean-field Eq9) to display steady-state
diffusing particle only sticks to the aggregate when it over-growth in a channel geometry. On the lateral boundaries of
laps a cluster particle. Moreover, since DLA growth imposeghe strip, we have imposed Neuman conditions fontHield
working with constant flux, i.e., with a finite slope of tle and Dirichlet condition for the field:

field at infinity, the presence of this cutoff prevents any ar-
bitrarily small fluctuation in front of the growing front to
start developing and thereby keeps the front from accelerat-
ing indefinitely.

ou
_ =0

(10)
ﬁy y=*xW/2

il

LI I (L N S L L L S B B L L

i (a) (b)
P T 10 e =
Uil E
Wiyl =
i A
_20 111 I Lt I 11 ) l L1l 1 I 1) |—;

0 20 40 x 80 80 100

(e)3

e binde

—
o

[o]

FIG. 9. Mean-field calculations of the aggre-
gate field distribution in a channel geometry with
the model parametersp=1, y=2, a=1, and
W=20. (a) Three-dimensional representation of
p(x,y). (b) Contour plots forp, the levels are
0.10, 0.20, 0.30, 0.40, and 0.50 from the outer to
the inner.(c) In gray are shown the points of the
channel where thp density is above the average
rate p,,=0.276. The continuous line is the shape
of the ST analytical finger of widtih=0.55.



and
ply=+w2=0. (13)
At the far end extremity of the strip, we have fixed the flux
of the walkers:
ou _ 12
e A (12)
x=L

The numerical procedure used to simulate 8).is in the

spirit of the quasistatic approximation that underlies the deri-

vation of these mean-field equatiof@0]. Given an initial

distribution for p, one solves the spatially forced Poisson’s

equation:
(—V2+p”+a?V?p)u=0. (13

Then, from the distribution ofi, one computegp/aJt from
Eq. (9a), and thep field can be advanced in time. In order to

account for the symmetry about the center of the channe
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0.4

Q

FIG. 10. Mean-field calculations of the transverse profile of the
p field with the model parameterg=1, y=2,a=1.(a) p vsy for
channels of widthW=32, 64, 128, and 256 from top to bottoii)
Plpmax VS YIW.

ing to the values of the parameteyandW. As seen in Fig.
, for the parameter values extracted from R&€l], namely,
=2 andW= 20, thep density distribution displays similar

inherent to the averaging over many DLA clusters, one cafiy,racteristics to the mean occupancy of off-lattice DLA
easily enforce this symmetry in the mean-field simulations sers in Figs. 1, 2, and 3. After some initial transient pe-

by starting from an initial condition for thg field, which is
invariant under this symmetry. The evolution under E).
actually preserves this symmetry.

The mean-field approach proposed by Brener, Levine, an

Tu [60] dependsa priori, upon four parameters: the flux
the cutoff exponent, the lattice spacing, and the channel
width W. However, if one rescales the time and théeld as

t=¢ T, u=el, (14)

one can fix the flux,
(15
without modifying Eq.(9). Let us note that fixing the flux to

p=1,

riod, the active front zone leaves an inactprprofile behind

it, which displays translational invariance. This is seen
clearly both on the contour plots in Fig(l9, which have a
ﬂnger shape, and on the longitudinalprofile in Fig. §b),
which is constant before the falloff to zero ahead of the
growth. From the transverse profile shown in Fig. 1(),

we have represented in grey in FigcPthe points of the
channel with a density that exceeds the averageggtde-
fined in Egs.(3) and (5). Very much like the ensemble-
averaged off-lattice DLA patterns in Figs(hl and 3b), the
boundary of this region of large occupancy is very well fitted
by the analytical ST solution of relative widi=0.55 (note
that very much like for the ensemble-averaged DLA patterns,
not all the contour plots have the ST finger shagéis is

1 is quite reasonable since it amounts to identifying the masgithout any doubt a very encouraging observation. Never-
to the time in the discrete DLA model. Now one can furthertheless, in order to conclude as to the relevance of this mean-

rescale time, space, and theandu fields in the following
way:
t=ar?-7%,

x=a"?x, y=a”?,

p=a %, u=a”A, (16)

which allows us to keepp=1 and to fix the value of the
lattice spacing to unity:
a=1.

17

In the simulations presented in this section, the widthof

field theory, one needs to proceed to a more quantitative
comparison.

In Fig. 10 are shown the transvergeprofiles computed
with y=2 for different values of the channel widi. Two
main features characterize the evolution of these profiles.
First, the maximum valug,,, at the center of the channel
decreases when increasiWy [Fig. 10@a)]; we will come
back to this point for the fractal analysis carried out in Sec.
Il C. Then, the shape of the transversedensity evolves
from a smooth to a steeper prof{lEig. 1ab)]; the interme-
diate region between the large occupancy region in the center
of the channel and the small occupancy regions near the

the channel will therefore be expressed in lattice spacingvalls becomes narrower with increasmg As shown in Fig.
units. Let us note at this point that the two rescaling transi1, the relative width\ of the large occupancy region de-

formations(14) and(16) do affect the aggregate fielg this
remark will be of fundamental importance in the following

fined as in Fig. &) actually decreases from values that are
significantly larger tharg for narrow strips(\=0.55+0.01

when we will compare the MFT predictions to the ensemblefor W=20) to values that approach for wider strips (\

averaged DLA patterns.

=0.52+0.01 forW=60). Indeed, as illustrated in Fig. (i),

We have thus performed simulations for various values othe rescaled mean transverse profile,,.,(y/W) does not
v andW. We have tested the convergence of our numericabeem to converge to any asymptotic profile as observed nu-

code according to the spatial resolution in both xhandy

merically for the ensemble averages of both on-lattice and

directions. Most of the results reported below correspond toff-lattice DLA patterns(this observation does not preclude

lattices of sizel X 40, wherel € [50,200] is adjusted accord-

the possibility of some convergence for very wide strips of
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width X\ of the large occupancy regiop$ p,,) versus IW.
For each value ofy, A systematically decreases when in-
creasingW. For a given value oV, A apparently decreases
when increasingy : for the mean transverse profiles shown
in Fig. 12 forw= 60, one obtains precisely=0.54(y=1.2),
0.52(y=1.6), 0.52(y=2), and 0.48(y=5).

As pointed out by Brener, Levine, and T60] in their
original paper, this mean-field approach has an intrinsic
problem that, to our knowledge, is not yet understood: it fails
to reproduce the spreading of the active front zone during
DLA growth [57]. In Fig. 8, the evolution of the longitudinal
profile of the aggregate field in the mean-field thefifg.
8(b)] is compared to the histogram of mean longitudinal oc-
cupancy in DLA simulationgFig. 8@)]. As shown in Fig.

8(d), the width of the front zone\xz computed with the
mean-field equations does not display any time dependence,
a result that is in contradiction with the scaling behavior
Axg~MY2~x 12 observed in Fig. &) for the DLA simula-
tions. This failure is, without any doubt, one of the main
weaknesses of the mean-field approach propé¢sedan for

. , . diffusion-limited aggregation.
width W much larger than those achieved with our computer

capabilities. Consequently, there is no indication that the
relative width\ of the large occupancy region defined from
the criterion given by Eq93) and (4) as well as from any The next step of our study is to demonstrate that the frac-
contour line converges to the asymptotic value3 pre- tal dimension of the DLA clusters can be extracted from the
dicted for the stable ST finger in the limit of zero surfaceW dependence of the mean occupancy distribution. As pre-
tension[33-40. There is no evidence that converges to viously pointed ouf57-59, from the translational invari-
any finite value either larger or smaller than ance of this distribution along the growth axis, one deduces
In Fig. 12, we have investigated the behavior of the transreadily that the mass has a one-dimensional component in
versep profile when varying the cutoff parameterfor a  the Ox direction that behaves as
fixed valueW=64 of the width of the channel. When in-
creasingy, pmax increasesFig. 12a)] while, as seen in Fig.
12(b), the rescaled mean transverse occupancy histogram
evolves towards a step-function profile characteristic ofwhereD, is the longitudinal partial dimensioftonsistently
stable fingers. This observation is quite consistent with thave have seen in Fig. 8 that the position of the growing front
remark of Brener, Levine, and T60] that in the limiting behaves ag:>M). Obviously, the geometrical fractality of
case wherey—+« anda—0 (or W— +=), the MF equa- the patterns has to come from the direction perpendicular to
tions become exactly the Saffman-Taylor problem at zerdhe channel axig32,101. The computation of the area of the
surface tension. For each of thevalues considered in Fig. mean transverse occupancy profile as a function of the width
12, we have further analyzed the dependence of the tranef the channel gives the transverse partial dimengign
versep profile as a function ofV. At a qualitative level,
whatever the value of, one recovers the same characteristic
features as observed fgr=2 in Fig. 10. At a quantitative

level, we have reported in Fig. 11 the estimate of the relativeynd in turn, from the trivial behavior in the longitudinal di-
rection[Eq. (18)], the fractal dimensiol is [102]

FIG. 11. Mean-field calculations of the relative widthof the
region of large occupancy defined as in Figc)9for various values
of the cutoff parameter. The model parameters axg=1 and
a=1.\ is plotted vs IW. The symbols correspond tp=1.2 (@),
1.6 (W), 2 (O), and 5(0).

C. Fractal analysis

M (x)cxPL  with D =1, (18

A(W)=M(W)xWPT, (19

(a) ] | 4_,,4" )
From the mean transverse occupation histograms com-

| puted from on-lattice and off-lattice simulations, for various

} _ channel widthsw ranging from 16 to 256, we have calcu-

lated the are®\(W) of each histogram and we have plotted

y/W

0.5

in Fig. 13 A(W)WxWPF as a function ofW in a log-log
representation. Both the on-lattice and off-lattice data re-
markably fall on a straight line; the dashed lines in Fig. 13
are lines of slope 1.660.01, which provide an excellent fit
of the two sets of data. One thus gets a value of the fractal

FIG. 12. Mean-field calculations of the transverse profile of thedimension,

p field with the model parameterg=1, a=1, W=64.(a) p vsy

for y=1.2, 1.6, 2, and 5 from bottom to tofh) p/pmax VS Y/W.

Dp=1.66+0.01, (22)
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tained in the DLA simulations. In Fig. 14 are shown the
results of a more systematic investigation of the fractal di-
mensionDg when varying the cutoff parameter Contrary
to what was suggested by Brener, Levine, and@@], D is
sensitive to the value ofy. As shown in Fig. 1&), the
De(y) curve is likely to present a minimum for a valyé
surprisingly close to the valug=2 (quadratic term Since
this minimum is smaller thasg, this means that there exist
two values ofy for which the mean-field equations account
for the fractal dimension observed in the DLA simulations,
namely,y~1.6 and 4.2. But unfortunately, as seen in Fig. 15
: for y=1.6, when the mean-field theory predicts the right
10 10 fractal dimension, i.e., the actu# dependence of the area
w of the mean transverse occupancy profile, it dramatically
fails to reproduce the exact shape of this transverse profile.
Indeed, the transvergeprofile has a much steeper profile for

from the computation of the/ dependence of the arédW) of the y=1.6 (and an_even ”?‘”e pronounced stepll_ke profl!e for
mean transverse occupancy histogr&fW)W is plotted as a func-  ¥—4-2, @S previously discussethan the numerical profiles
tion of W in logarithmic scales. The dashed lines correspond to°0Mputed with either the on-lattice or the off-lattice DLA
straight lines of slop&. Off-lattice (®) and on-lattice(O) simula- algonthms. This is the demonstration that vyhen pushing the
tions are compared to mean-field theory calculatiol§ of the ~ comparison beyond soméspectacular qualitative agree-
transverse profile for the parameter valugs=1, y=2, anda=1.  ment, the mean-field theory, as formulated in ), actu-

The solid line corresponds to a fractal dimensipp=1.58. ally presents some severe deficiencies with respect to the

modeling of ensemble-averaged DLA patterns.

for both on-lattice[57,59 and off-lattice DLA clusters that To conclude this section, let us remark that what gives the

matches perfectly the theoretical predictiqi03—-105 value of the fractal Qimensiong is mainly theW de-
De=(d2+1)/(d+1) (=%) derived from some mean-field pendence of the heighi,,, of the mean transverse occu-

: . . From the definition@®) for on-lattice DLA clusters or
scaling argumentgsee also Refs[106,107) applied to P3Ny _ :
diffusi?)n-li%ited aggregation in dimensiod(=2§).pLet us (0 foroff-lattice DLA clusters, of the region of large occu-

note that this estimatéEq. (21)] lies between previous box- pancy, the area of the transverse occupancy profile is equal

counting measurements of the fractal dimensiont® th.e area of a step function profile of widktw and height

De=1.63+0.03 of off-lattice DLA clusters grown in open Pmax:
circular geometry[74,75,108—11D and the well-known
value Dg=1.71+0.02 obtained from the evolution of the

radius of gyration[50,51,108,109 This discrepancy might - gjnce we have seen in Fig. 4 thais practically equal to 0.5,

also indicate some m(_)rphological difference between DLAup to terms of order (W)*?, one deduces from E¢R2) that
patterns grown in confined or in open geometry. One cannot

also exclude the possibility of some weak multifractal depar- P WPT Lo W13, (23
ture from statistical homogeneifit 11].

In Fig. 13 are also reported the results obtained from th&Ve have checked this scaling law with a good accuracy for
W dependence of the transverse profile of the aggregate both the on-latticd57,59 and off-lattice DLA simulations.
field computed with the mean-field equatiof®, (10), and  This scaling law is also rather well verified by the mean-field
(12) for the parameter valugs=1, y=2, anda=1. The data numerical results fory=1.6 and 4.2. This can be understood
again fall nicely on a straight line but the slope, by the fact that, despite the uncertainty concerning the exist-
Dr=1.58+0.01, is significantly smaller than the valg®b-  ence of an asymptotic limit value, the relative widttdoes

vl vl vl gl
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¥

FIG. 13. Estimate of the fractal dimensi@} of DLA clusters

A(W) = o Wee WOT, (22)
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FIG. 14. Mean-field estimate of the fractal di-

mensionDg of DLA patterns(see Fig. 13as a

function of the cutoff parametey. (a) A(W)W vs

W in logarithmic scales; the symbols have the

same meaning as in Fig. 14=1.2(®), 1.6 (W),

2 (0), and 5(0); the solid lines correspond to

linear regression fit estimate & . (b) Dg vs y.
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P/ Proax

FIG. 15. Comparison of the shape of the mean transverse occu-
pancy profile for off-lattice DLA clusteré--) with the prediction of FIG. 16. Off-lattice DLA clusters grown in a wedge of angle
the mean-field equatio9) (—) for the parameter valueg=1, (8 6=30% M=2000;(b) 6p=120° M =12 000.
v=1.6, anda=1. (a) W=64; (b) W=128.
ticles. Since the local width of the ceW=r 6, increases
not vary too much when increasing the width of the stripduring the growth, for eacld, we thus need to investigate

from W=16 to 128 as reported in Fig. 12. several values ol in order to characterize the unsteadiness
of this nonequilibrium dynamical process. When averaging
ll. SECTOR GEOMETRY over 2000 DLA clusters of the type shown in Fig.(a6 we

obtain the mean occupancy distribution represented under
various forms in Fig. 17. This distribution is typical of
To conduct DLA simulations in sector geometry, we haveensemble-averaged DLA patterns at some early stage of
mainly used the efficient off-lattice algorithm designed in agrowth in a small-angle wedge. The contour plots in Fig.
previous work for simulating DLA growth in circular geom- 17(b) have a well-defined finger shape of fixed relative width
etry [73—79. Initially a seed particle is located at the origin . As seen on the mean azimuthal occupancy histograms
and the diffusing particles are launched at a random positiop(r =R, 6) for various values oR in Fig. 17d), the mean
from a circle of radiug 5, +1, wherer ., is the maximum occupancy histogram in Fig. (& is maximum along the
radius of the growing cluster andhas a value of a few bisector(6=0). Again, most of the growth is concentrated in
particle diametergpracticallyl=3a). Then, in order to al- the central part of the cell. Moreover, beyond some initial
low the particle to take large jumps, we have followed thetransient regime in the inner region of the wedgtse to
very efficient strategy of hierarchical off-lattice algorithms asthe apex where the growth is strongly affected by finite-size
described in Sec. Il A. According to standard practiceeffecty, the mean radial occupancy histograms clearly de-
[50,51, we have introduced an escape circle of radiuscrease as a power lag9=0) when moving away from the
r.=4rax beyond which the diffusing particle is lost. The apex, as shown in Fig. 1G). This rarefaction comes with
sticking rule requires some overlap of the diffusing particlesome spreading of the overall occupancy histogram in Fig.
with the cluster, as characterized by an overlap param&ter 17(a), which is a characteristic feature of DLA growth in an
where G=6<1; as defined in Sec. Il A, smadlvalues corre- open sector geometry. In this intermediate inactive region,
spond to slight overlappings. In this section, we will mainly which precedes the falloff in the active front zone, the mean
consider sector-shaped cells of anglg=27/2p. This will  azimuthal occupancy histograms computed at different radii
allow us to avoid the very time consuming reflection prob-R can be rescaled onto a unique profile as illustrated in Fig.
lem on the side walls of the wed{j@3]. Indeed, we just have 18(a). This allows us to define a mean angular relative width
to run the off-lattice algorithm in circular geometry, letting for the ensemble-averaged DLA patterns:
the particle diffuse from one sector to the next until it sticks N 3
to the cluster. Then, instead of sticking this particle at its ()= 67 (r)—6(r)
arrival site only, we also stick a particle at each of its sym- 0o '
metric sites in the other®—1 sectors. In this way, we will
simultaneously grow @ identical clusters in @ complemen-  where = (r) on each side of the bisect6=0) can be de-
tary wedges of sector anglé,= w/p. For wedges of arbi- fined according to either a criterion similar to E@) for
trary angle6,, we will alternatively proceed to the computa- on-lattice DLA simulations in a channel,
tion of the exact position of the diffusing particle after each
reflection on the side walls. In Figs. & and 1b) are 1 + 6o/2
shown two DLA clusters of mas#=2000 and 12 000, 0i(r)=ﬂ E p(r,0), (25
grown using this hierarchical off-lattice algorithm in two PmafT, 0=0) 52
wedges of respective angg=30° and 120°. o . )
As in linear geometry, our statistical analysis of off-lattice " @ Criterion in the spirit of Eq(6) deduced from off-lattice
DLA clusters in a wedge consists in measuring the meafPLA Simulations in linear geometry:
occupancy p(r,f) of each site of the cell, where
fe[—6y2,64/2]. In a given wedge of anglé,, we therefore
grow N aggregates with the same total numidérof par-

A. Off-lattice DLA simulations

(24)

1
p(r,ﬂi(r))=5p(r,0=0)- (26)
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FIG. 17. Statistical analysis of off-lattice
DLA clusters of massM=2000 grown in a
wedge of anglef,=30°. Our statistical sample

T RN N i

200 __ 300 involves N=2000 aggregates similar to the one

1O 77

100

. S = shown in Fig. 16a). (a) Three-dimensional rep-
(c)3 resentation of the mean occupangir,6). (b)
o@=0° ] Contour plots forp; the levels correspond to
0.025 for n=1-10 from outer to innerc) His-

3 togram of mean radial occupangyr, 6= 0) for
=8=10°3 ©=0°, 5°, 10°.(d) Histogram of mean azimuthal
1 occupancy(r=R,#) for different radiiR. (e) In
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gray is represented the region of large occupancy
as defined in Eq$24) and (25) (see tex, in the
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(e)“ active front zone the selected points satisfy
p(r,0)=p(Rax, 0" (Rya),  Where Ryq,=180
delimits the frozen region where the growth has
ceased. The solid line corresponds to Ben Amar’s
analytical solution of relative width =0.65.
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X

Whatever the criterion one uses, the relative angular width surface tension. Let us further point out that the numerical

is found larger thad. When using Eq(25), one gets a value
A=0.65+0.02 for off-lattice DLA clusters, which is again
significantly larger than the estimate=0.58+0.03 obtained
for a similar statistical sample dfi=2000 on-lattice DLA
clusters of the same ma$29,57]. But what is still very
impressive is the agreement observed in FigellBetween

value A~0.65 is quite compatible with the relative width
predicted for stable fingers belonging to the branch
Mn=o(8p=30°,B) selected by surface tensip#6], provided
one identifies the capillary length to a few particle sizes as
previously pointed out in linear geometry. It is not such a
surprise that the cell geometry should determine the large-

the region of large occupancy defined by selecting the pointscale shape of the profile of mean occupancy. It is a very

of the sector cell such thai(r,8)=p(r,6~(r)) and the self-
dilating finger shape of the same relative angular wisth
calculated analytically by Ben Am4#6] in the absence of

(b

0/Pmax

[1 ) A —— s
-0.5 0 0.5

y/W

FIG. 18. Rescaled mean azimuthal occupancy histogsém
=R,0)/p(r=R, 6=0) for various radii.(a) 6,=30°: R=400 (—),
500 (---), and 700(—). (b) §,=60°: R=25 (—), 125(---), and 225
(—). In both (a) and (b), our statistical sample involved=2000
off-lattice DLA clusters of masM =2000 and 12 000, respectively.

striking result, however, that the selected solution should be
reminiscent of the stable one. In sector-shaped cells, when
the structure diverges from the apex, a fractal structure builds
up in a larger and larger range of scales betwleeandr 6.
During this buildup it seems to retain the same sensitivity to
both the large and the small scales. In other words, the se-
lection action of the microscopic length scale is likely to act
through the entire range, up to the largest scale of the pattern.
When opening the wedge angtg, one observes some
drastic change in the shape of the mean occupancy distribu-
tion as shown in Figs. 19 and 20 fa&h=90° (N=2000,
M=3000 and 120°(N=2000, M=12 000, respectively.
When increasingl,, the mean profile becomes flatter in the
center of the cell with a steeper decrease to zero on both
sides of this central plateau. This evolution is clearly illus-
trated in Fig. 18d) where the mean azimuthal occupancy
histograms computed at different radii fég=90° all display
a very pronounced steplike profile. Simultaneously, the con-
tour plots in Fig. 1%b) become flatter in their most advanced
part away from the apex. Moreover, as shown in Fig. 20, if
one keeps increasing, a topological change is observed on
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(c)3 FIG. 19. Statistical analysis dfi=2000 off-
1. 8=0° 1 lattice DLA clusters of mas# =3000 grown in

»@=10°] a wedge of anglé#,=90°. Same representations
3 59=20°] asin Fig. 17. In(e) the contour plop=0.176 that
28=30°] delimits the shaded region is compared to Ben
Amar’s analytical solution of relative angular
width A=0.77 (solid line).
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the mean occupancy distribution. Two lobes emerge on botld,=90°]. The highest level curves of large occupancy have a
sides of this distribution, one symmetric with the other with different shape, which qualitatively resembles a viscous fin-
respect to the bisector as a result of the averaging proceduger pattern after tip splitting21,28 [Fig. 2Qe)]. Thus the
over many DLA realizationglet us note that the appearance comparison of these contour plots with Ben Amar’s self-
of these two lobes could have already been guessed fromdilating finger solutions is no longer pertinent.

careful examination of Fig. 19 fof,=90°, where this phe- In fact, if, for a given value of the wedge anglg, one
nomenon is on the verge of emergindhen, as shown in averagegunlike in Fig. 179 over DLA clusters of larger and
Figs. 19c¢) and 2@c), the mean radial occupancy histogramslarger mass, ultimately one will reach a valuewbffor which
p(r)=p(r,0=0) computed for different values @ cross the mean-occupancy distribution will display the transition
through each other near the center of the sector; this phenorfrom a unimodal to a bimodal profile in the frozen region
enon has been called “profile crossing” in RE61]. Unlike  behind the active front zone. Then, as shown in Figbl8
the channel case, the mean azimuthal histograims R, 6) for 6,=60°, the mean azimuthal occupancy histograms com-
computed for various radiR in Fig. 20d) have a bimodal puted at different radiR can no longer be rescaled onto a
profile with two maxima that have emerged on the edges ofinique profile. This indicates that for a given wedge arggle
the plateau and a minimum at the cenfierO. This is a clear and a given mas# large enough, the shape of the mean
indication that the growth probability is no longer maximum occupancy distribution constantly evolves from a unimodal
along the bisector. Although the stiffness of the mean azitowards a bimodal profile. Therefore the search of a mean
muthal profile allows us to define a mean relative angulasingle finger shape underlying the unstable DLA growth in a
width A occupied by our ensemble-averaged DLA patternswedge is no longer justified. Actually, the mean occupancy
the fact that these profiles are no longer unimodal makedistribution is likely to retain some memory of the whole set
rather questionable the definition of a mean finger shape tof stable fingers that belong to the brangh_,(6,B) se-

be compared with the analytical solutions of Ben Arf¥8]. lected by surface tension up to the critical vaBg where
Indeed, as seen in Fig. @), while the different contour this branch collides with the unstable branch.;(6,B) and
plots have almost the same relative angular willth0.77  disappear$46—49. Once the size of the finger goes beyond
+0.03, they have drastically different shapes. The lowesthis merging threshold, tip splitting occurs and there is no
level curves corresponding to small occupafest0.1) have  stable smooth finger in the sector geometry for siBali.e.,

the shape of a single finger, but they differ from Ben Amar'slargeW=r ;). The topological change from a unimodal to a
analytical solutions since they are much flatter in the frontoimodal profile of the mean occupancy distribution can thus
zone [112] [see the direct comparison in Fig. (€D for  be seen as the footprint of the tip-splitting instability of vis-



53 STATISTICAL ANALYSIS OF OFF-LATTICE DIFFUSION.. .. 6215

FIG. 20. Statistical analysis dfi=2000 off-
lattice DLA clusters of mas$1 =12 000 grown
in a wedge of anglgg,=120°. Same representa-
tions as in Fig. 17. In(e) the contour plot
p=0.196 that delimits the shaded region is com-
pared to Ben Amar's analytical solution of rela-
tive angular widthh=0.77 (solid line).

cous fingers growing in a wedge. Since this branch merging For the sake of comparison, we have reproduced our sta-
is induced by surface tension, its indirect observation on théistical analysis of DLA clusters in a wedge using an on-
ensemble-averaged DLA patterns confirms the selective rolittice algorithm[57], the bisector being one of the axes of
of the microscopic length scale, i.e., the particle size, in DLAthe underlying square lattice. For small sector angles and
growth. small mass clusters, the mean occupancy distribution does
From a statistical point of view, one can try to interpret not seem to be very much affected by the lattice anisotropy.
the global shape of the mean occupancy distribution as th&his is no longer the case if one increases the mMas#\s
superposition of many realizations, some of which corresshown in Fig. 21, for a wedge angh=120°, the presence
spond to a single main fractal branch that is well developeaf the underlying lattice favors the growth along the lattice
in the central part of the wedge, while some others areaxis, thereby inhibiting the transition to a bimodal mean oc-
mainly made of two main branches that have grown on eithecupancy distributiof61]. The mean radial histograms no
side of the bisector. The latter realizations being obviouslyjonger display the “profile crossing” phenomenon observed
shorter since the total mass is shared by two branches coufdr off-lattice DLA simulations[Fig. 21(c)]. The mean azi-
explain the presence of the two lobes in the inner frozermuthal histograms have again a unique maximum at the cen-
region of p(r,6) [Fig. 20@)]. In the active front zone, the ter 6=0 [Fig. 21(d)]. The contour plots in Fig. Zb) have a
mean azimuthal histogram recovers a unimodal prpfilgs.  squarelike shape similar to the petal shape of anomalous vis-
19(d) and 2@d)] since most of the realizations that contribute cous fingers in the presence of fourfold anisotrgpi/5,114.
so far away from the apex consist in DLA clusters that haveWhen proceeding to large-mass simulations, one can check
not produced secondary fractal branches. Actually, as dighat the mean relative width of these ensemble-averaged
covered in Refs[74,75,113,114 the inner frozen region of DLA patterns, calculated using E(R4) with either Eq.(25)
DLA clusters is likely to display a statistically predominant or Eq.(26) to defined=(r), systematically decreases towards
Fibonacci structural ordering. One can therefore expect taero when going away from the apex. This anisotropy-
observe some further topological changeome further induced stabilization of the “normal” unimodal pattern with
branchings in the contour plgtg the mean occupancy pro- maximum density always along the bisector regardless of the
file when further increasing the mads. However, some distance of the apex is again very reminiscent of what is
specific treatment on each realization is required in order tdheoretically predicted and experimentally observed for
prevent the averaging procedure to restore the symmetrstable viscous patterns. Ben Amar has shown in Ritf5]
with respect to the bisector. This work is currently in that adding a sufficient anisotropy can eliminate the branch
progress. merging phenomenon and allow the stable finger solution
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FIG. 21. Statistical analysis dfi=1000 on-
lattice DLA clusters of mas® =6000 grown in

a wedge of angle §,=120°. (a Three-
dimensional representation of the mean occu-
pancyp(r,6). (b) Contour plots forp; the levels
correspond to 0.026for n=1-10 from outer to
inner. (c) Histogram of mean radial occupancy
p(r=R, 6=0) for different values o®. (d) His-
L .. togram of mean azimuthal occupanefr =R, )
0 100 r 200 for different radii R. (¢) The contour plot
0.4 A S B o p=0.137 that delimits the shaded region is com-
r (d): 200 pared to Ben Amar's analytical solution of rela-
03 L ¢ R=20 tive angular widthh=0.75 (solid line).
Pt y
0.2 R=30 _ 0
R=80
- &k R=120
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L H 1 ] -200
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branch \,,—q(6y,B) to survive in the limitB—0 (i.e, P|9=¢9O/z=0- (29

W=r gy—+x). Actually \,,_q(6y,B) is predicted to con-

verge to zero in this asymptotic limit. Anomalous viscous . ]

fingers growing in a wedge are therefore stabilized with reAS F— + 9, we impose thagu/Jr =c/r, wherec is the rate
spect to tip splitting by anisotropy. We are claiming only thatat which particles are being released. Pra_ctlcally, we fix the
the ensemble-averaged on-lattice DLA structures are alstux of the “walkers” at the far end extremity of the wedge:
sensitive to these considerations.

Ju ®

B. Mean-field diffusion-limited aggregation ar r_L:E' (30

The generalization of the mean-field approach described

in Sec. Il B from channel to radial geometries was first per-a
formed by Levine and Tu in Ref61]. For sectors, the mean-
field equation(9) takes the following form when using polar

coordinates:

s in linear geometry, from some adequate rescalindgs rqf
and the fieldp andu, one can fix the lattice spacing and the
flux to unity: a=e=1.
In this section, we report the results of the numerical in-
19 tegration of Eq(27) with the boundary condition@8), (29),
- )u, (279 and(30) for various values ofy and 6,, which are the only
r free parameters left to this mean-field approach. The resolu-
5 ) tion used to compute the and u fields is similar to those
i‘9_+ R 1 i) (27  Previously considered for linear strips: in polar coordinates
2962 a2 roar)P (r,6), we use lattices of sizk x 40, whereL e [50,200] is
adjusted according to the final size of the mean growth one
Again, we impose Neuman boundary conditions for the intends to achieve. Also, we explicitly impose symmetry
field: about the bisector by starting from an initial condition for the
p field that is invariant under this symmetry. The numerical
- VUl g= 42=0, (28 procedure is again based on the fact thas a “passive”
field without any proper dynamics. At a fixed time, we can
wheref is the normal to the side walls and Dirichlet condi- thus findu directly from thep field; we then update and
tion for the p field: continue.

ap 1(92+¢92+
at \r2a? " ar?

ot ar

J
—p=u p7+a2

ot
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FIG. 22. Mean-field calculation of the field
distribution in a wedge of anglg),=30°; the
model parameters are=1, y=2, a=1. (a)
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3 conso °8=0" 1 profiles: p(r,6=©) for ©=0°, 5°, and 10°(d)
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Y —— ' . : ' ! s : L 2428004 3 line corresponds to the mean-field calculation of
0 r 100 the boundary of this region; Ben Amar’s analyti-
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In Figs. 22 and 23 are reported the numeriggirofiles  the two profiles are indistinguishable. Moreover, they pro-
computed with the mean field equati®yv) for two wedges vide a very good fit of the boundary of the large occupancy
of respective angl@,=30° and 120°. The value of the cutoff region of off-lattice DLA clustergshaded arealet us note
parameter isy=2 as in Ref[61]. In the small-angle wedge that this self-similar region has been rescaled from Fige)17
(Fig. 22, after some transients, the aggregate fjelstarts to Fig. 22e) in order to position its tip at the same location
developing with a rather compact fingerlike profile that isas the tip of the mean mean-field finger. More generally, the
very similar to the shape of the mean occupancy distributiortontour plots of the density in Fig. 22b) are quite compa-
of off-lattice DLA clusters in the early stage of growthig.  rable to the finger-shaped level curves of the ensemble-
17). As seen on both the radial profilgsig. 22c)] and the  averaged DLA pattern in Fig. 1B).
azimuthal profilegFig. 22d)], the p density is maximum If one proceeds to more time consuming simulations of
along the bisector. The former decreases smoothly when orthe mean-field equation, one realizes very quickly that the
moves radially away from the apex until one reaches theself-similar regime observed in the early stage of growth is
exponential falloff in the active front zone. The latters dis- nothing more than a transient phenomenon. Indeed, the pro-
play a unimodal characteristic shape centeredaf0. As file of thep field in the frozen region constantly evolves from
shown in Fig. 24a), these azimuthab profiles computed at a unimodal to a bimodal profile. This is illustrated in Fig.
different radii in the frozen region are nearly self-similar 24(b) where the azimuthab profile calculated in a cell of
since they can be almost rescaled onto a unique profileangle§,=60° becomes flatter and flatter at the top when one
Therefore, one can reasonably use either the crit@daor  moves further away from the apex, until one goes beyond
(26) to define a mean relative angular widtHEq. (24)] of ~ some critical radius where two shoulders appear on the edges
the p density. When using Eq(25), one gets the value of this steplike profile. This topological transition is strik-
A=0.67£0.01, which is in remarkable quantitative agree-ingly similar to the one observed in ensemble-averaged DLA
ment with the estimate obtained for ensemble-averaged offpatterns in Fig. 1&). The larger the angle of the cell, the
lattice DLA patterns in Fig. 17. In Fig. Z8), the region of smaller the critical radius, i.e., the sooner the morphological
large p density(solid line) as defined by selecting the points transition from a unimodal to a bimodalprofile takes place.
of the sector cell such thai(r,8)=p(r,6(r)) is compared When comparing the results of the mean-field calculations
to Ben Amar’s analytic finger solutiofdashed lingof equal  for 6,=120° in Fig. 23 to the corresponding mean occupancy
relative angular width in the absence of surface tengiGi DLA distribution in Fig. 20, one observes similar features
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that are characteristic of this morphological transition. Thefrom Ben Amar’s analytical solutions. Indeed none of the
radial p profile in Fig. 23c) presents the profile crossing contour plots corresponds to a member of Ben Amar’s solu-
phenomenon detected in Fig.(20 The azimuthap profiles  tion family [46]. This is not suprising since, as previously
in Fig. 23d) are no longer maximum but are minimum at the discussed, there is no stable smooth finger in the sector ge-
center; they display two maxima symmetric with each otherometry for smallB, i.e., in the limit of large size, because of
with respect to the center as observed in Fig(dR2OThe intrinsic tip-splitting instability[20,46]. The results reported
contour plots in Fig. 2®) have drastically different shapes in this section show that in this unstable regime, while the
as in Fig. 2@b): the lowest level curves of small density  comparison of the ensemble-averaged DLA patterns with ST
have the shape of very flat fingers, while the highest levefinger profiles no longer works, the mean-field theory still
curves of largep density have a tip-splitted finger shape. As accounts, at least at a qualitative level, for the topological
shown in Fig. 28), these highest level curves are quite characteristics of the mean occupancy distribution computed
comparable with the highest contour plots of the mean occuin off-lattice DLA simulations.
pancy of off-lattice DLA clusters and obviously clearly differ

C. Fractal analysis

If off-lattice DLA clusters grown in sector geometries are
homogeneous fractal aggregates as seems to be the case in
] circular geometry74,75,108-11]) the exponent of the sin-

1 gularity located at the apex of the wedge is identical to the
singularity exponent at any other cluster point. In other
words, the way the mass contained in a ball scales as a func-
tion of the size of the ball does not depend upon the point
where the ball is centered, provided this point belongs to the
cluster:M (#(X, €) )< €°F, whereD is the fractal dimension

of the DLA cluster. A way of computindp therefore con-
sists in integrating the mean occupancy distribution over all
of the sector up to some radibs

@] R )]

P/ Prax

0 RN S T S [ S SR N 0 MR S |
-0.5 0
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FIG. 24. Rescaled azimuthal density profilggr =R, 6)/p(r
=R, #=0) for various radii.(@) §,=30°: R=30(—), 50 (---), and
70 (—). (b) §,=60°: R=20 (—), 60 (---), and 80(—).

R [ 6o/2
M(R)=f f p(r,0)r dr do=RPF, (31
0 J—6p2
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v=1.6, in wedges of various anglég, are shown in Fig. 25;
they actually lie in the error bars of both on-lattice and off-
lattice data.

But very much like what we have already noticed in linear
geometry(see Fig. 15 the fact that fory=1.6 and 4.2 the
mean-field theory accounts for the radial dependence of the
mass does not mean that it quantitatively reproduces the ra-
dial evolution of the shape of the mean occupancy profile.

10% We have checked that this is indeed not the case. For wedges
R of arbitrary angle6,, the comparison of the shapes of the
mean-field azimuthap profile at different radial positions
with the corresponding mean azimuthal DLA occupancy his-
tograms reveals some quantitative discrepancies, although
they both exhibit a transition from a unimodal to a bimodal
profile. Actually, for DLA clusters of a given mas$s grown
in a wedge of anglé,, there is no time at which one can
stop the mean-field calculation so that after some radial res-
caling in order to adjust the position of the active front zone,

T . SR the p contour lines match exactly the level curves of the
0 50 100 mean DLA occupancy distribution. This is the confirmation
8o that, as formulated in Eq27), the mean-field approach pro-
vides a good approximation of the ensemble-averaged DLA

FIG. 25. Estimate of the fractal dimensi@y from the radial ~ Structures in sector geometry, but fails to pass any quantita-
dependence of the mass according to @&4). (a) logM vs logR:  tive comparison test. In that sense, this generalization of Wit-
(—) off-lattice simulations{---) mean-field calculationgb) D¢ vs  te€n and Sander’s original mean-field approach still deserves
6. The symbols have the following meanin@, off-lattice DLA ~ Some additional refinements.
simulations;O, on-lattice DLA simulationsl, mean-field calcula-
tions with y=2; [, mean-field calculations withy=1.6.
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IV. DISCUSSION

In Fig. 25 are reported the estimatesdf from large-mass To summarize briefly, we have carried out a statistical
off-lattice DLA simulations in sectors of angle ranging from analysis of off-lattice DLA clusters grown in either linear or
15° to 120°. As seen in Fig. 28, when plotting M (R) sector geometry. We have compared the mean occupancy
defined in Eq(31) versusR in a log-log representation, one distributions to the predictions of a recently adapted version
observes a very nice scaling behavior in an intermediatg60,61 of the mean-field approach originally proposed by
range of values oR, which corresponds to the frozen region Witten and Sanddi50]. In channels, the walls impose trans-
left behind the active outer front zone. From a linear regrestational invariance to the mean occupancy, which is found to
sion fit of these numerical data, one extracts the values of theonverge to a smooth asymptotic profile when increasing the
fractal dimensiorD ¢, which does not seem to depend uponwidth W of the strip. The shape of this profile is likely to be
the value of the wedge angle,. Indeed, the data in Fig. selected by surface tension, the size of the aggregating par-
25(b) are quite compatible with the estimdde =1.66-0.01 ticles playing the role of the capillary length in viscous fin-
previously obtained in strip geometr§fFig. 13, i.e., for  gering. Actually, we have shown that the region of large
6,=0. Let us point out that on-lattice DLA simulations yield occupancy, as defined by some contour pBg. (6)], has
a similar g,-independent estimate @, which, up to the exactly the shape of a Saffman-Taylor finger with a relative
numerical uncertainty, cannot be distinguished from the offwith A(W) that converges tg when increasing/V, as ex-
lattice value3. We recall that this numerical estimate is in pected from the theory of stable fingd@%#—40. This indi-
perfect agreement with the theoretical predictioncates that the off-lattice algorithm has removed the crossover
De=(d?+1)/(d+1) for diffusion-limited aggregation inl phenomenon from isotropic to dendritic fractal DLA patterns
dimensiong 103-104. observed in on-lattice simulatio§8,59 with a mean rela-
Figure 25 also shows for comparison the estimates of théve width A(W) that converges ultimately to zero in the
fractal dimensionDg from the mean-field calculations de- limit W— +o. In sector geometry, the comparison of the
scribed in Sec. Ill B. AgaiD does not show any significant DLA mean occupancy profile to ST fingers is no longer rel-
dependence upon the wedge angjeFor y=2, we therefore evant since, as shown in Refd6—-49, the presence of finite
recover a value ofDg that as in linear geometry surface tension prevents the stable finger from reaching an
(Dg=1.58+0.01), slightly underestimates the value ex-asymptotic self-similar shape of finite relative angular width.
tracted from ensemble-averaged DLA patterns. For other valAt a critical size that depends upon the cell angje this
ues of the cutoff parameter, one gets estimates that are all finger becomes unstable due to the so-called tip-splitting in-
in good agreement with the results obtained in channel gestability. What our off-lattice DLA simulations in sector ge-
ometry (Fig. 14). As discussed in Sec. Il C, the mean-field ometry show is that, except in the early stage of growth in
theory formulated in Eq(27) is likely to predict a fractal small-angle cells where some connection to stable ST fingers
dimension that matches the DLA valilg-=3 for only two  can still be achieved, the mean occupancy distribution is not
values ofy, namely,y~1.6 and 4.2. The estimatesBf for  self-similar in the sense that it cannot be radially rescaled
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onto a unique asymptotic profile. Actually, the shape of the |
ensemble-averaged DLA pattern constantly evolves from a | (a)
unimodal profile close to the apex towards a bimodal profile
beyond some critical radius. This topological change of the .
DLA mean occupancy profile is strikingly reminiscent of the &
morphological tip-splitting instability of ST fingers. Thisis 3§ | | \
again a strong indication that surface tension is present in [ [/ \
DLA growth and that the microscopic scale introduced by i | L v ]
the size of the aggregating particles actually governs the se- o%.ioev.s, . olefiii i1 I
lection of a particular mean-occupancy profile. Let us em-
phasize that this topological transition in the mean- y/W /¥
occupancy distribution was not observed in previous studies
of on-lattice DLA clusters[57]. Very much like the FIG. 26. Same as in Fig. 15 except that some quadratic¢pfm
anisotropy-induced stabilization of anomalous ST fingershas been added to thg term in the right-hand side of mean-field
[115], the lattice anisotropy stabilizes the unimodal finger-equation(9b).
shaped mean occupancy profile, which no longer bifurcates
into a bimodal prof”e but progressive|y crosses over to dattice DLA simulations by nOtiCing that the mean transverse
petal finger shape with a relative radial width that asymptoti-occupancy profile satisfies the steady-state equation:
cally converges to zero.

When solving numerically the mean-field equations f(pr)=—a%spr/dy*. (33

[60,61], for almost any arbitrary values of the cutoff param- r,q validity of Eq.(33) relies on the fact that the overall

etery, one gets solutions _that qualitatively mimic most of themean—occupamcy profile displays translational invariance in
characteristic features displayed by the ensemble-averag?g

g . i e frozen region behind the active front zone. From the
DLA patterns in linear as well as in sector geometries. ASractal analysis carried out in Sec. Il C, we know that this
shown by Levine and T({i61], one can even model the re- transverse profil |

. . . : ; profile scales as

sults of the on-lattice DLA simulations by including some
anisotropy in the mean-field equations. However, there is a pr(y)=WPF=2.2(y/W), (34)
gap between qualitative and quantitative modeling. In par-
ticular, when computing the fractal dimensi@ of DLA  when considering channels of different widths. Heféx) is
clusters from the scaling properties of the integrateder  a universalW independent, profile. From Eq83) and(34),
spatial coordinatgsaggregatep field, we have found that we have represented in Fig. 2% W* Pro?p/oy? as a
most of the values of the cutoff parametedo not yield the  function of W?~Prp;. The data obtained from the DLA
dimensionDg=3 extracted from both off-lattice and on- mean transverse profiles computed at different channel
lattice simulations. Actually, only two values of namely, widthsW=48, 80, 96, and 112, all fall on a similar curg¢et
v~1.6 and 4.2, seem to give satisfactory estimates. Unfortuds note that the oscillations observed for large valuegof
nately, for each of these two values, the mean-figtilofiles  are the consequence of statistical fluctuations in the estimate
computed in both linear and sector geometries cannot bef p; in the central part of the channel whegse is maxi-
quantitatively rescaled onto the corresponding numericaium). This observation brings the clue thigp) is likely to
DLA mean-occupancy profiles. This discrepancy indicatesbe a smooth nonlinear function pfthat definitely depends
that the revised mean-field approach prompted by Breneypon the widthW of the channel. This is experimental evi-
Levine, and Tu60] in linear geometry and Levine and Tu dence that explaina posterioriwhy the revised mean-field
[61] in sector geometry is still a premature theory that cer-
tainly deserves further improvement.

A rather naive idea would consist in introducing some
higher order terms in the field variable in both Eqgs(9b)
and (27b). As shown in Fig. 2@), when choosingy=1.6
and adding a quadratic terop? in Eq. (9b), one can find a
value ofc such that the transvergeprofile coincides with
the mean transverse occupancy profile of DLA growth in a |,
channel of widthW=64. Unfortunately this same value of
does not work for wider channels as seen in Figib2éor
W=128. Nevertheless, one can still hope to remedy this dis-
crepancy by considering additional higher order terms in or-
der to have more free parameters at our disposal. However,
one can show that this strategy is hopeless. Let us rewrite Eq.
(9b) under a more general form:

200

2
p1/ 0y

—200

_W-'?/S 9

aplat=u[(f(p)+a*V?p)], (32

_ _ o FIG. 27. — W32 p1/9y? vs W3p1 wherepr is the mean trans-
wheref is an unknown function op. Some insight to the verse occupancy profile extracted from off-lattice DLA simulations
specific shape of this function can be gained from our off-in linear strips of widthw=48 (l), 80 (O), 96 (®), and 112(O).
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theory fails to account for the width dependence of thegregate opaque to the diffusion field. Actually, the fact that
ensemble-averaged DLA patterns. Moreover, the results ifi(p) <0 if p<p. (Fig. 27) can be interpreted as introducing
Fig. 27 show thaf(p) becomes negative for valugs<p., an additional cutoff to the growth rate terp?, which is
wherep, is some finite value, contrarly to all the modelings probably due to the nonpenetrability of the aggregate to the
proposed so far, e.gf(p) =p” or pO(p—c) [60] (where®  random walkers. There has been some recent attempts to
is the Heaviside function The DLA data therefore do not glaporate in this direction in Ref117]. As represented in
accommodate of a mean-field model with a single nonlineafig. 27, the results of our statistical analysis of off-lattice
term f(p)=p”. DLA clusters are likely to provide a decisive test for future

To understand the inadequacy of the mean-field theoryhean-field approaches of diffusion-limited aggregation.
proposed by Brener, Levine, and T&0] and Levine and Tu

[61], one has to come back to the original work of Witten

and Sandef50]. It is clear that one of the main ingredients ACKNOWLEDGMENTS

of this approach and probably one of its main weaknesses is
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